Interactions of shock wave and heavy gas cylinders with different diffusive interfaces are numerically investigated. Comparisons among these interfaces are made in terms of cylinder morphology, wave system evolution, ...Interactions of shock wave and heavy gas cylinders with different diffusive interfaces are numerically investigated. Comparisons among these interfaces are made in terms of cylinder morphology, wave system evolution, fluids mixing, and circulation generation. Navier-Stokes equations are solved in the present work to simulate the complex multi-fluid flow. The fifth-order weighted essentially non-oscillatory scheme is used to compute the numerical flux. The influence of interface diffusion is revealed by the numerical results. The cylinders with similar geometric scale but different diffusion interface have great similarities in the hydrodynamic characteristics, including the interface morphology, shock focusing and molecular mixing, as well as circulation deposition. For the cases with more serious interface diffusion, the cylinder develops into more regular vortex pairs. The diffusive interface greatly mitigates the strength of the reflected shock wave and weakens the shock focusing capability. Some interface structural features are also recorded and analyzed. The diffusive interface brings about slower molecular mixing and less circulation generation. The circulation deposition on different interfaces is quantitatively investigated and compared with the theoretical models. The theoretical models are found to be applicable to the scenarios of diffusive interfaces.展开更多
We have defined the environmental interface through the exchange processes between media forming this interface. Considering the environmental interface as a complex system we elaborated the advanced mathematical tool...We have defined the environmental interface through the exchange processes between media forming this interface. Considering the environmental interface as a complex system we elaborated the advanced mathematical tools for its modelling. We have suggested two coupled maps serving the exchange processes on the environmental interfaces spatially ranged from cellular to planetary level, i.e. 1) the map with diffusive coupling for energy exchange simulation and 2) the map with affinity, which is suitable for matter exchange processes at the cellular level. We have performed the dynamical analysis of the coupled maps using the Lyapunov exponent, cross sample as well as the permutation entropy in dependence on different map parameters. Finally, we discussed the map with affinity, which shows some features making it a promising toll in simulation of exchange processes on the environmental interface at the cellular level.展开更多
Seawater intrusion caused by groundwater over-exploitation from coastal aquifers poses a severe problem in many regions. Formulation of proper pumping strategy using a simulation model can assure sustainable supply of...Seawater intrusion caused by groundwater over-exploitation from coastal aquifers poses a severe problem in many regions. Formulation of proper pumping strategy using a simulation model can assure sustainable supply of fresh water from the coastal aquifers. The focus of the present study is on the development of a numerical model based on Meshfree (MFree) method to study the seawater intrusion problem. For the simulation of seawater intrusion problem, widely used models are based on Finite Difference (FDM) and Finite Element (FEM) Methods, which demand well defined grids/meshes and considerable pre-processing efforts. Here, MFree Point Collocation Method (PCM) based on the Radial Basis Function (RBF) is proposed for the simulation. Diffusive interface approach with density-dependent dispersion and solution of flow and solute transport is adopted. These equations are solved using PCM with appropriate boundary conditions. The developed model has been verified with Henry’s problem, and found to be satisfactory. Further the model has been applied to another established problem and an attempt is made to examine the influence of important system parameters including pumping and recharge on the seawater intrusion. The PCM based MFree model is found computationally efficient as preprocessing is avoided when compared to other numerical methods.展开更多
A solute trapping model is developed based on a so-called solute drag treatment.By adopting a basic approach of phase-field models,and defining the free energy density in the interfacial region,a suitable interface sh...A solute trapping model is developed based on a so-called solute drag treatment.By adopting a basic approach of phase-field models,and defining the free energy density in the interfacial region,a suitable interface shape function is introduced to derive the current model,in which the equilibrium and non-equilibrium interface behaviours can be described using a dimensionless parameter L (i.e.an important parameter in the present interface shape function).When applying the current model to Si-9%As (molar fraction) alloy with L=0.5,a good prediction of the steeper profile for high interface velocity,which is analogous to that using a phase-field model of DANILOV and NESLTER,has been obtained.展开更多
The interfacial diffusive contaminant(phosphorus) release from permeable sediment layer into overlying water column under a unidirectional unsteady(periodic) flow condition was experimentally measured and analyzed...The interfacial diffusive contaminant(phosphorus) release from permeable sediment layer into overlying water column under a unidirectional unsteady(periodic) flow condition was experimentally measured and analyzed. The experimental results indicate that the gross diffusive contaminant release rate is substantially enhanced as compared to that under a steady flow condition, and this enhancement trend is much more pronounced in an immediate release stage. The interfacial diffusive contaminant release rate tends to increase with the increasing flow velocity, decreasing period and augmenting amplitude for the case of the unsteady flow. The additional interfacial diffusive contaminant release under the unsteady flow condition may be related to the hydrodynamic response of the diffusive boundary layer to the flow unsteadiness of the overlying water, depending upon not only the periodic thickness variation of the diffusive boundary layer immediately above the sediment-water interface modulated by the temporal flow velocity of the overlying water column but also the intensified turbulent mixing between the overlying water and the pore-water within the superficial sediment layer induced by an alternate acceleration/deceleration fluctuation during each period.展开更多
The diffusive boundary layer (DBL) is the zone for matter exchange between surface water and aquatic sediments. To elucidate the influence of DBL on salt release from saline sediments to freshwater, two experiments ...The diffusive boundary layer (DBL) is the zone for matter exchange between surface water and aquatic sediments. To elucidate the influence of DBL on salt release from saline sediments to freshwater, two experiments with or without wind blowing were conducted. According to the experiments, a 3.5 cm DBL is formed above the smoothed sediments at a steady wind field and this thickness is greater than other studies. The observed flux of salt through the DBL is 6% larger than the calculated value from Fick' s first law. The results indicate that molecular diffusion is the dominant mechanism for salt transport through the DBL. The presence of DBL suppresses the hydrodynamic enhancement for matter exchange between sediments and overlying water. Therefore, salts in the sediments of a polder reservoir may influence the water quality chronically.展开更多
A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equ...A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equation is integrated along the wall-normal direction to link the tangential component of the effective body force for the IB method to the wall shear stress predicted by the wall model;(ii) a set of Lagrangian points near the wall are introduced to compute the normal component of the effective body force for the IB method by reconstructing the normal component of the velocity. This novel method will be a classical direct-forcing IB method if the grid is fine enough to resolve the flow near the wall. The method is used to simulate the flows around the DARPA SUBOFF model. The results obtained are well comparable to the measured experimental data and wall-resolved LES results.展开更多
A compressible lattice Boltzmann-finite difference method is extended by the phase-field approach into a monolithic scheme to study fluid flow and heat transfer through regular arrangements of solid bodies of circular...A compressible lattice Boltzmann-finite difference method is extended by the phase-field approach into a monolithic scheme to study fluid flow and heat transfer through regular arrangements of solid bodies of circular,elliptical and irregular shapes.The advantage of using the phase-field method is demon-strated both in its simplicity of accounting for flow and thermal boundary conditions at solid surfaces with irregular shapes and in the capability of generating such complex-shaped objects.For an array of discs,numerical results for the overall solid-to-gas heat transfer rate are validated via experiments on flow through arrays of hot cylinders.The thus validated compressible LB-FD-PF hybrid scheme is used to study the dependence of heat transfer on flow and thermal boundary conditions(Reynolds number,temperature difference between the hot solid bodies and the inlet gas),porosity as well as on the shape of solid objects.Results are rationalized in terms of the residence time of the gas close to the solid body and downstream variations of gas velocity and temperature.Perspective for further applications of the proposed methodology are also discussed.展开更多
文摘Interactions of shock wave and heavy gas cylinders with different diffusive interfaces are numerically investigated. Comparisons among these interfaces are made in terms of cylinder morphology, wave system evolution, fluids mixing, and circulation generation. Navier-Stokes equations are solved in the present work to simulate the complex multi-fluid flow. The fifth-order weighted essentially non-oscillatory scheme is used to compute the numerical flux. The influence of interface diffusion is revealed by the numerical results. The cylinders with similar geometric scale but different diffusion interface have great similarities in the hydrodynamic characteristics, including the interface morphology, shock focusing and molecular mixing, as well as circulation deposition. For the cases with more serious interface diffusion, the cylinder develops into more regular vortex pairs. The diffusive interface greatly mitigates the strength of the reflected shock wave and weakens the shock focusing capability. Some interface structural features are also recorded and analyzed. The diffusive interface brings about slower molecular mixing and less circulation generation. The circulation deposition on different interfaces is quantitatively investigated and compared with the theoretical models. The theoretical models are found to be applicable to the scenarios of diffusive interfaces.
文摘We have defined the environmental interface through the exchange processes between media forming this interface. Considering the environmental interface as a complex system we elaborated the advanced mathematical tools for its modelling. We have suggested two coupled maps serving the exchange processes on the environmental interfaces spatially ranged from cellular to planetary level, i.e. 1) the map with diffusive coupling for energy exchange simulation and 2) the map with affinity, which is suitable for matter exchange processes at the cellular level. We have performed the dynamical analysis of the coupled maps using the Lyapunov exponent, cross sample as well as the permutation entropy in dependence on different map parameters. Finally, we discussed the map with affinity, which shows some features making it a promising toll in simulation of exchange processes on the environmental interface at the cellular level.
文摘Seawater intrusion caused by groundwater over-exploitation from coastal aquifers poses a severe problem in many regions. Formulation of proper pumping strategy using a simulation model can assure sustainable supply of fresh water from the coastal aquifers. The focus of the present study is on the development of a numerical model based on Meshfree (MFree) method to study the seawater intrusion problem. For the simulation of seawater intrusion problem, widely used models are based on Finite Difference (FDM) and Finite Element (FEM) Methods, which demand well defined grids/meshes and considerable pre-processing efforts. Here, MFree Point Collocation Method (PCM) based on the Radial Basis Function (RBF) is proposed for the simulation. Diffusive interface approach with density-dependent dispersion and solution of flow and solute transport is adopted. These equations are solved using PCM with appropriate boundary conditions. The developed model has been verified with Henry’s problem, and found to be satisfactory. Further the model has been applied to another established problem and an attempt is made to examine the influence of important system parameters including pumping and recharge on the seawater intrusion. The PCM based MFree model is found computationally efficient as preprocessing is avoided when compared to other numerical methods.
基金Projects(50501020, 50395103, 50431030) supported by the National Natural Science Foundation of China Project(NCET-05-870) supported by Program for New Century Excellent Talents in University of China Project(CX200706) supported by the Doctorate Foundation of Northwestern Polytechnical University,China
文摘A solute trapping model is developed based on a so-called solute drag treatment.By adopting a basic approach of phase-field models,and defining the free energy density in the interfacial region,a suitable interface shape function is introduced to derive the current model,in which the equilibrium and non-equilibrium interface behaviours can be described using a dimensionless parameter L (i.e.an important parameter in the present interface shape function).When applying the current model to Si-9%As (molar fraction) alloy with L=0.5,a good prediction of the steeper profile for high interface velocity,which is analogous to that using a phase-field model of DANILOV and NESLTER,has been obtained.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11032007,11472168)the Shanghai key Laboratory of mechanics in energy Engineering and Shanghai Program for Innovative Research Team in Universities
文摘The interfacial diffusive contaminant(phosphorus) release from permeable sediment layer into overlying water column under a unidirectional unsteady(periodic) flow condition was experimentally measured and analyzed. The experimental results indicate that the gross diffusive contaminant release rate is substantially enhanced as compared to that under a steady flow condition, and this enhancement trend is much more pronounced in an immediate release stage. The interfacial diffusive contaminant release rate tends to increase with the increasing flow velocity, decreasing period and augmenting amplitude for the case of the unsteady flow. The additional interfacial diffusive contaminant release under the unsteady flow condition may be related to the hydrodynamic response of the diffusive boundary layer to the flow unsteadiness of the overlying water, depending upon not only the periodic thickness variation of the diffusive boundary layer immediately above the sediment-water interface modulated by the temporal flow velocity of the overlying water column but also the intensified turbulent mixing between the overlying water and the pore-water within the superficial sediment layer induced by an alternate acceleration/deceleration fluctuation during each period.
基金The National Science Foundation of China under contract No.40572142the Doctoral Foundation of the Ministry of Education of China under contract No.20040423016.
文摘The diffusive boundary layer (DBL) is the zone for matter exchange between surface water and aquatic sediments. To elucidate the influence of DBL on salt release from saline sediments to freshwater, two experiments with or without wind blowing were conducted. According to the experiments, a 3.5 cm DBL is formed above the smoothed sediments at a steady wind field and this thickness is greater than other studies. The observed flux of salt through the DBL is 6% larger than the calculated value from Fick' s first law. The results indicate that molecular diffusion is the dominant mechanism for salt transport through the DBL. The presence of DBL suppresses the hydrodynamic enhancement for matter exchange between sediments and overlying water. Therefore, salts in the sediments of a polder reservoir may influence the water quality chronically.
基金Project supported by the National Natural Science Foundation of China(Nos.91752118,11672305,11232011,and 11572331)the Strategic Priority Research Program(No.XDB22040104)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(No.QYZDJ-SSWSYS002)
文摘A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equation is integrated along the wall-normal direction to link the tangential component of the effective body force for the IB method to the wall shear stress predicted by the wall model;(ii) a set of Lagrangian points near the wall are introduced to compute the normal component of the effective body force for the IB method by reconstructing the normal component of the velocity. This novel method will be a classical direct-forcing IB method if the grid is fine enough to resolve the flow near the wall. The method is used to simulate the flows around the DARPA SUBOFF model. The results obtained are well comparable to the measured experimental data and wall-resolved LES results.
基金funded by the Deutsche For-schungsgemeinschaft(DFG,German Research Foundation)-422037413-CRC/TRR 287"BULK-REACTION".
文摘A compressible lattice Boltzmann-finite difference method is extended by the phase-field approach into a monolithic scheme to study fluid flow and heat transfer through regular arrangements of solid bodies of circular,elliptical and irregular shapes.The advantage of using the phase-field method is demon-strated both in its simplicity of accounting for flow and thermal boundary conditions at solid surfaces with irregular shapes and in the capability of generating such complex-shaped objects.For an array of discs,numerical results for the overall solid-to-gas heat transfer rate are validated via experiments on flow through arrays of hot cylinders.The thus validated compressible LB-FD-PF hybrid scheme is used to study the dependence of heat transfer on flow and thermal boundary conditions(Reynolds number,temperature difference between the hot solid bodies and the inlet gas),porosity as well as on the shape of solid objects.Results are rationalized in terms of the residence time of the gas close to the solid body and downstream variations of gas velocity and temperature.Perspective for further applications of the proposed methodology are also discussed.