The first order differential matrix equations of the host shell and constrained layer for a sandwich rotational shell are derived based on the thin shell theory.Employing the layer wise principle and first order shear...The first order differential matrix equations of the host shell and constrained layer for a sandwich rotational shell are derived based on the thin shell theory.Employing the layer wise principle and first order shear deformation theory, only considering the shearing deformation of the viscoelastic layer, the integrated first order differential matrix equation of a passive constrained layer damping rotational shell is established by combining with the normal equilibrium equation of the viscoelastic layer.A highly precise transfer matrix method is developed by extended homogeneous capacity precision integration technology.The numerical results show that present method is accurate and effective.展开更多
The present paper presents the three-dimensional magneto-thermo-elastic analysis of the functionally graded cylindrical shell immersed in applied thermal and magnetic fields under non-uniform internal pressure. The in...The present paper presents the three-dimensional magneto-thermo-elastic analysis of the functionally graded cylindrical shell immersed in applied thermal and magnetic fields under non-uniform internal pressure. The inhomogeneity of the shell is assumed to vary along the radial direction according to a power law function, whereas Poisson's ratio is supposed to be constant through the thickness. The existing equations in terms of the displacement components, temperature, and magnetic parameters are derived, and then the effective differential quadrature method (DQM) is used to acquire the analytical solution. Based on the DQM, the governing heat differential equations and edge boundary conditions are transformed into algebraic equations, and discretized in the series form. The effects of the gradient index and rapid temperature on the displacement, stress components, temperature, and induced magnetic field are graphically illustrated. The fast convergence of the method is demonstrated and compared with the results obtained by the finite element method (FEM).展开更多
Any composition sequential mapping, periodic composition mapping of a complete non-empty metric space M into M with geometric mean contraction ratio less than 1 ( simplifying as 'g-contraction mapping' ) has a...Any composition sequential mapping, periodic composition mapping of a complete non-empty metric space M into M with geometric mean contraction ratio less than 1 ( simplifying as 'g-contraction mapping' ) has a unique fixed point in M . Applications of the theorem to the proof of existence and uniqueness of the solutions of a set of non-linear differential equations and a coupled integral equations of symmetric bending of shallow shell of revolution are given.展开更多
A new numerical approach is presented to compute the large deformations of shell-type structures made of the Saint Venant-Kirchhoff and Neo-Hookean materials based on the seven-parameter shell theory.A work conjugate ...A new numerical approach is presented to compute the large deformations of shell-type structures made of the Saint Venant-Kirchhoff and Neo-Hookean materials based on the seven-parameter shell theory.A work conjugate pair of the first Piola Kirchhoff stress tensor and deformation gradient tensor is considered for the stress and strain measures in the paper.Through introducing the displacement vector,the deformation gradient,and the stress tensor in the Cartesian coordinate system and by means of the chain rule for taking derivative of tensors,the difficulties in using the curvilinear coordinate system are bypassed.The variational differential quadrature(VDQ)method as a pointwise numerical method is also used to discretize the weak form of the governing equations.Being locking-free,the simple implementation,computational efficiency,and fast convergence rate are the main features of the proposed numerical approach.Some well-known benchmark problems are solved to assess the approach.The results indicate that it is capable of addressing the large deformation problems of elastic and hyperelastic shell-type structures efficiently.展开更多
It is proved mathematically in this paper that the strain-stress function F onthe cylindrical shell theory suggested by Vlasov [5] will give out the general solution of the simultaneous partial differential equations...It is proved mathematically in this paper that the strain-stress function F onthe cylindrical shell theory suggested by Vlasov [5] will give out the general solution of the simultaneous partial differential equations of cylindrical shell problem. That is to say. there is no any solution Of the simultaneous partial differential equations can be omitted due to Vlasov's suggestion. The conclusion suggested in this paper is helpful to the well-known Vlasov's method.展开更多
This paper deals with the research of accuracy of differential equations of deflections. The basic idea is as follows. Firstly, considering the boundary effect the meridian midsurface displacement u=0, thus we derive ...This paper deals with the research of accuracy of differential equations of deflections. The basic idea is as follows. Firstly, considering the boundary effect the meridian midsurface displacement u=0, thus we derive the deflection differential equations; secondly we accurately prove that by use of the deflection differential equations or the original differential equations the same inner forces solutions are obtained; finally, we accurately prove that considering the boundary effect the meridian surface displacement u = 0 is an exact solution. In this paper we give the singular perturbation solution of the deflection differential equations. Finally we check the equilibrium condition and prove the inner forces solved by perturbation method and the outer load are fully equilibrated. It shows that perturbation solution is accurate. On the other hand, it shows again that the deflection differential equation is an exact equation.The features of the new differential equations are as follows:1. The accuracies of the new differential equations and the original differential e-quations are the same.2. The new differential equations can satisfy the boundary conditions simply.3. It is advantageous to use perturbation method with the new differential equations.4 We may obtain the deflection expression(w)and slope expression (dw/da) by using the new differential equations.The new differential equations greatly simplify the calculation of spherical shell. The notation adopted in this paper is the same as that in Ref. [1]展开更多
The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect ...The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect is considered. Detailed formulations and procedures are given for the first time. Several examples are analyzed and accurate results are obtained by the DQEM. Based on the results in this paper, one may conclude that the DQEM is a useful tool for obtaining solutions of structural elements. It can be seen that the shell shape may be theore tically controlled and snap through may occur when the applied voltage reaches a critical value even without mechanical load for certain geometric configurations.展开更多
基金supported by the National Natural Science Foundation of China (No.10662003)Educational Commission of Guangxi Province of China (No.200807MS109)
文摘The first order differential matrix equations of the host shell and constrained layer for a sandwich rotational shell are derived based on the thin shell theory.Employing the layer wise principle and first order shear deformation theory, only considering the shearing deformation of the viscoelastic layer, the integrated first order differential matrix equation of a passive constrained layer damping rotational shell is established by combining with the normal equilibrium equation of the viscoelastic layer.A highly precise transfer matrix method is developed by extended homogeneous capacity precision integration technology.The numerical results show that present method is accurate and effective.
文摘The present paper presents the three-dimensional magneto-thermo-elastic analysis of the functionally graded cylindrical shell immersed in applied thermal and magnetic fields under non-uniform internal pressure. The inhomogeneity of the shell is assumed to vary along the radial direction according to a power law function, whereas Poisson's ratio is supposed to be constant through the thickness. The existing equations in terms of the displacement components, temperature, and magnetic parameters are derived, and then the effective differential quadrature method (DQM) is used to acquire the analytical solution. Based on the DQM, the governing heat differential equations and edge boundary conditions are transformed into algebraic equations, and discretized in the series form. The effects of the gradient index and rapid temperature on the displacement, stress components, temperature, and induced magnetic field are graphically illustrated. The fast convergence of the method is demonstrated and compared with the results obtained by the finite element method (FEM).
文摘Any composition sequential mapping, periodic composition mapping of a complete non-empty metric space M into M with geometric mean contraction ratio less than 1 ( simplifying as 'g-contraction mapping' ) has a unique fixed point in M . Applications of the theorem to the proof of existence and uniqueness of the solutions of a set of non-linear differential equations and a coupled integral equations of symmetric bending of shallow shell of revolution are given.
文摘A new numerical approach is presented to compute the large deformations of shell-type structures made of the Saint Venant-Kirchhoff and Neo-Hookean materials based on the seven-parameter shell theory.A work conjugate pair of the first Piola Kirchhoff stress tensor and deformation gradient tensor is considered for the stress and strain measures in the paper.Through introducing the displacement vector,the deformation gradient,and the stress tensor in the Cartesian coordinate system and by means of the chain rule for taking derivative of tensors,the difficulties in using the curvilinear coordinate system are bypassed.The variational differential quadrature(VDQ)method as a pointwise numerical method is also used to discretize the weak form of the governing equations.Being locking-free,the simple implementation,computational efficiency,and fast convergence rate are the main features of the proposed numerical approach.Some well-known benchmark problems are solved to assess the approach.The results indicate that it is capable of addressing the large deformation problems of elastic and hyperelastic shell-type structures efficiently.
文摘It is proved mathematically in this paper that the strain-stress function F onthe cylindrical shell theory suggested by Vlasov [5] will give out the general solution of the simultaneous partial differential equations of cylindrical shell problem. That is to say. there is no any solution Of the simultaneous partial differential equations can be omitted due to Vlasov's suggestion. The conclusion suggested in this paper is helpful to the well-known Vlasov's method.
文摘This paper deals with the research of accuracy of differential equations of deflections. The basic idea is as follows. Firstly, considering the boundary effect the meridian midsurface displacement u=0, thus we derive the deflection differential equations; secondly we accurately prove that by use of the deflection differential equations or the original differential equations the same inner forces solutions are obtained; finally, we accurately prove that considering the boundary effect the meridian surface displacement u = 0 is an exact solution. In this paper we give the singular perturbation solution of the deflection differential equations. Finally we check the equilibrium condition and prove the inner forces solved by perturbation method and the outer load are fully equilibrated. It shows that perturbation solution is accurate. On the other hand, it shows again that the deflection differential equation is an exact equation.The features of the new differential equations are as follows:1. The accuracies of the new differential equations and the original differential e-quations are the same.2. The new differential equations can satisfy the boundary conditions simply.3. It is advantageous to use perturbation method with the new differential equations.4 We may obtain the deflection expression(w)and slope expression (dw/da) by using the new differential equations.The new differential equations greatly simplify the calculation of spherical shell. The notation adopted in this paper is the same as that in Ref. [1]
文摘The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect is considered. Detailed formulations and procedures are given for the first time. Several examples are analyzed and accurate results are obtained by the DQEM. Based on the results in this paper, one may conclude that the DQEM is a useful tool for obtaining solutions of structural elements. It can be seen that the shell shape may be theore tically controlled and snap through may occur when the applied voltage reaches a critical value even without mechanical load for certain geometric configurations.