The quasi-static and dynamic responses of a thermoviscoelastic Timoshenko beam subject to thermal loads are analyzed. First, based on the small geometric deformation assumption and Boltzmann constitutive relation, the...The quasi-static and dynamic responses of a thermoviscoelastic Timoshenko beam subject to thermal loads are analyzed. First, based on the small geometric deformation assumption and Boltzmann constitutive relation, the governing equations for the beam are presented. Second, an extended differential quadrature method(DQM)in the spatial domain and a differential method in the temporal domain are combined to transform the integro-partial-differential governing equations into the ordinary differential equations. Third, the accuracy of the present discrete method is verified by elastic/viscoelastic examples, and the effects of thermal load parameters, material and geometrical parameters on the quasi-static and dynamic responses of the beam are discussed. Numerical results show that the thermal function parameter has a great effect on quasi-static and dynamic responses of the beam. Compared with the thermal relaxation time, the initial vibrational responses of the beam are more sensitive to the mechanical relaxation time of the thermoviscoelastic material.展开更多
The dynamics and stability of fluid-conveying corrugated pipes are investigated. The flow velocity is assumed to harmonically vary along the pipe rather than with time. The dimensionless equation is discretized with t...The dynamics and stability of fluid-conveying corrugated pipes are investigated. The flow velocity is assumed to harmonically vary along the pipe rather than with time. The dimensionless equation is discretized with the differential quadrature method (DQM). Subsequently, the effects of the mean flow velocity and two key parameters of the corrugated pipe, i.e., the amplitude of the corrugations and the total number of the corrugations, are studied. The results show that the corrugated pipe will lose stability by flutter even if it has been supported at both ends. When the total number of the corrugations is sufficient, this flutter instability occurs at a micro flow velocity. These phenomena are verified via the Runge-Kutta method. The critical flow velocity of divergence is analyzed in detail. Compared with uniform pipes, the critical velocity will be reduced due to the corrugations, thus accelerating the divergence instability. Specifically, the critical flow velocity decreases if the amplitude of the corrugations increases. However, the critical flow velocity cannot be monotonously reduced with the increase in the total number of the corrugations. An extreme point appears, which can be used to realize the parameter optimization of corrugated pipes in practical applications.展开更多
The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elas...The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elasticity theories using the differential quadrature method (DQM) is presented. Main advantages of the MCST over the classical theory (CT) are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter. Based on the nonlinear von Karman assumption, the governing equations of equilibrium for the micro-classical plate consid- ering midplane displacements are derived based on the minimum principle of potential energy. Using the DQM, the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained. Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature. A parametric study is conducted to show the effects of the aspect ratio, the side-to-thickness ratio, Eringen's nonlocal parameter, the material length scale parameter, Young's modulus of the surface layer, the surface residual stress, the polymer matrix coefficients, and various boundary conditions on the dimensionless uniaxial, biaxial, and shear critical buckling loads. The results indicate that the critical buckling loads are strongly sensitive to Eringen's nonlocal parameter, the material length scale parameter, and the surface residual stress effects, while the effect of Young's modulus of the surface layer on the critical buckling load is negligible. Also, considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate. The results show that the critical biaxial buckling load increases with an increase in G12/E2 and vice versa for E1/E2. It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude. Because of the most lightweight micro-composite materials with 展开更多
The dynamic stability of axially moving viscoelastic Rayleigh beams is pre- sented. The governing equation and simple support boundary condition are derived with the extended Hamilton's principle. The viscoelastic ma...The dynamic stability of axially moving viscoelastic Rayleigh beams is pre- sented. The governing equation and simple support boundary condition are derived with the extended Hamilton's principle. The viscoelastic material of the beams is described as the Kelvin constitutive relationship involving the total time derivative. The axial tension is considered to vary longitudinally. The natural frequencies and solvability condition are obtained in the multi-scale process. It is of interest to investigate the summation parametric resonance and principal parametric resonance by using the Routh-Hurwitz criterion to obtain the stability condition. Numerical examples show the effects of viscos- ity coefficients, mean speed, beam stiffness, and rotary inertia factor on the summation parametric resonance and principle parametric resonance. The differential quadrature method (DQM) is used to validate the value of the stability boundary in the principle parametric resonance for the first two modes.展开更多
The present paper presents the three-dimensional magneto-thermo-elastic analysis of the functionally graded cylindrical shell immersed in applied thermal and magnetic fields under non-uniform internal pressure. The in...The present paper presents the three-dimensional magneto-thermo-elastic analysis of the functionally graded cylindrical shell immersed in applied thermal and magnetic fields under non-uniform internal pressure. The inhomogeneity of the shell is assumed to vary along the radial direction according to a power law function, whereas Poisson's ratio is supposed to be constant through the thickness. The existing equations in terms of the displacement components, temperature, and magnetic parameters are derived, and then the effective differential quadrature method (DQM) is used to acquire the analytical solution. Based on the DQM, the governing heat differential equations and edge boundary conditions are transformed into algebraic equations, and discretized in the series form. The effects of the gradient index and rapid temperature on the displacement, stress components, temperature, and induced magnetic field are graphically illustrated. The fast convergence of the method is demonstrated and compared with the results obtained by the finite element method (FEM).展开更多
The problem of two-dimensional steady flow of an incompressible second-order viscoelastic fluid coupled with heat transfer between parallel plates was considered. A viscous dissipation function was included in the ene...The problem of two-dimensional steady flow of an incompressible second-order viscoelastic fluid coupled with heat transfer between parallel plates was considered. A viscous dissipation function was included in the energy equation. When the elastic property of the fluid is weaker, the zeroth-order and first-order approximate governing equations were obtained by means of the perturbation method. To understand the behavior of flow near the tube wall, the half-domain was divided into two sub-domains, in which one is a thin layer near the wall called the inner domain and the remainder is called the outer domain. The governing equations in the inner domain and in the outer domain were discretized respectively by using the Differential Quadrature Method (DQM). The matching conditions at the interface between the inner and outer domains were presented. An iterative method for solving these discretized equations was given in this paper. The numerical results obtained agree with existing results.展开更多
The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equation...The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equations were expanded with respect to a snmll parameter to get the zeroth- and first-order approximate equations. By using the differenl2al quadrature method with only a few grid points, the high-accurate numerical results were obtained.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11772182 and90816001)
文摘The quasi-static and dynamic responses of a thermoviscoelastic Timoshenko beam subject to thermal loads are analyzed. First, based on the small geometric deformation assumption and Boltzmann constitutive relation, the governing equations for the beam are presented. Second, an extended differential quadrature method(DQM)in the spatial domain and a differential method in the temporal domain are combined to transform the integro-partial-differential governing equations into the ordinary differential equations. Third, the accuracy of the present discrete method is verified by elastic/viscoelastic examples, and the effects of thermal load parameters, material and geometrical parameters on the quasi-static and dynamic responses of the beam are discussed. Numerical results show that the thermal function parameter has a great effect on quasi-static and dynamic responses of the beam. Compared with the thermal relaxation time, the initial vibrational responses of the beam are more sensitive to the mechanical relaxation time of the thermoviscoelastic material.
基金Project supported by the National Natural Science Foundation of China(Nos.11872044,11702192,and 11672187)the National Key Research and Development Program of China(No.2018YFB0106200)
文摘The dynamics and stability of fluid-conveying corrugated pipes are investigated. The flow velocity is assumed to harmonically vary along the pipe rather than with time. The dimensionless equation is discretized with the differential quadrature method (DQM). Subsequently, the effects of the mean flow velocity and two key parameters of the corrugated pipe, i.e., the amplitude of the corrugations and the total number of the corrugations, are studied. The results show that the corrugated pipe will lose stability by flutter even if it has been supported at both ends. When the total number of the corrugations is sufficient, this flutter instability occurs at a micro flow velocity. These phenomena are verified via the Runge-Kutta method. The critical flow velocity of divergence is analyzed in detail. Compared with uniform pipes, the critical velocity will be reduced due to the corrugations, thus accelerating the divergence instability. Specifically, the critical flow velocity decreases if the amplitude of the corrugations increases. However, the critical flow velocity cannot be monotonously reduced with the increase in the total number of the corrugations. An extreme point appears, which can be used to realize the parameter optimization of corrugated pipes in practical applications.
基金supported by the Iranian Nanotechnology Development Committee and the University of Kashan(No.363452/10)
文摘The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elasticity theories using the differential quadrature method (DQM) is presented. Main advantages of the MCST over the classical theory (CT) are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter. Based on the nonlinear von Karman assumption, the governing equations of equilibrium for the micro-classical plate consid- ering midplane displacements are derived based on the minimum principle of potential energy. Using the DQM, the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained. Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature. A parametric study is conducted to show the effects of the aspect ratio, the side-to-thickness ratio, Eringen's nonlocal parameter, the material length scale parameter, Young's modulus of the surface layer, the surface residual stress, the polymer matrix coefficients, and various boundary conditions on the dimensionless uniaxial, biaxial, and shear critical buckling loads. The results indicate that the critical buckling loads are strongly sensitive to Eringen's nonlocal parameter, the material length scale parameter, and the surface residual stress effects, while the effect of Young's modulus of the surface layer on the critical buckling load is negligible. Also, considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate. The results show that the critical biaxial buckling load increases with an increase in G12/E2 and vice versa for E1/E2. It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude. Because of the most lightweight micro-composite materials with
基金Project supported by the National Natural Science Foundation of China(Nos.11202136,11372195,11502147,and 11602146)
文摘The dynamic stability of axially moving viscoelastic Rayleigh beams is pre- sented. The governing equation and simple support boundary condition are derived with the extended Hamilton's principle. The viscoelastic material of the beams is described as the Kelvin constitutive relationship involving the total time derivative. The axial tension is considered to vary longitudinally. The natural frequencies and solvability condition are obtained in the multi-scale process. It is of interest to investigate the summation parametric resonance and principal parametric resonance by using the Routh-Hurwitz criterion to obtain the stability condition. Numerical examples show the effects of viscos- ity coefficients, mean speed, beam stiffness, and rotary inertia factor on the summation parametric resonance and principle parametric resonance. The differential quadrature method (DQM) is used to validate the value of the stability boundary in the principle parametric resonance for the first two modes.
文摘The present paper presents the three-dimensional magneto-thermo-elastic analysis of the functionally graded cylindrical shell immersed in applied thermal and magnetic fields under non-uniform internal pressure. The inhomogeneity of the shell is assumed to vary along the radial direction according to a power law function, whereas Poisson's ratio is supposed to be constant through the thickness. The existing equations in terms of the displacement components, temperature, and magnetic parameters are derived, and then the effective differential quadrature method (DQM) is used to acquire the analytical solution. Based on the DQM, the governing heat differential equations and edge boundary conditions are transformed into algebraic equations, and discretized in the series form. The effects of the gradient index and rapid temperature on the displacement, stress components, temperature, and induced magnetic field are graphically illustrated. The fast convergence of the method is demonstrated and compared with the results obtained by the finite element method (FEM).
文摘The problem of two-dimensional steady flow of an incompressible second-order viscoelastic fluid coupled with heat transfer between parallel plates was considered. A viscous dissipation function was included in the energy equation. When the elastic property of the fluid is weaker, the zeroth-order and first-order approximate governing equations were obtained by means of the perturbation method. To understand the behavior of flow near the tube wall, the half-domain was divided into two sub-domains, in which one is a thin layer near the wall called the inner domain and the remainder is called the outer domain. The governing equations in the inner domain and in the outer domain were discretized respectively by using the Differential Quadrature Method (DQM). The matching conditions at the interface between the inner and outer domains were presented. An iterative method for solving these discretized equations was given in this paper. The numerical results obtained agree with existing results.
文摘The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equations were expanded with respect to a snmll parameter to get the zeroth- and first-order approximate equations. By using the differenl2al quadrature method with only a few grid points, the high-accurate numerical results were obtained.