The proper orthogonal decomposition(POD)and the singular value decomposition(SVD) are used to study the finite difference scheme(FDS)for the nonstationary Navier-Stokes equations. Ensembles of data are compiled from t...The proper orthogonal decomposition(POD)and the singular value decomposition(SVD) are used to study the finite difference scheme(FDS)for the nonstationary Navier-Stokes equations. Ensembles of data are compiled from the transient solutions computed from the discrete equation system derived from the FDS for the nonstationary Navier-Stokes equations.The optimal orthogonal bases are reconstructed by the elements of the ensemble with POD and SVD.Combining the above procedures with a Galerkin projection approach yields a new optimizing FDS model with lower dimensions and a high accuracy for the nonstationary Navier-Stokes equations.The errors between POD approximate solutions and FDS solutions are analyzed.It is shown by considering the results obtained for numerical simulations of cavity flows that the error between POD approximate solution and FDS solution is consistent with theoretical results.Moreover,it is also shown that this validates the feasibility and efficiency of POD method.展开更多
Using Nevanlinna theory of the value distribution of meromorphic functions and Wiman-Valiron theory of entire functions, we investigate the problem of growth order of solutions of a type of systems of difference equat...Using Nevanlinna theory of the value distribution of meromorphic functions and Wiman-Valiron theory of entire functions, we investigate the problem of growth order of solutions of a type of systems of difference equations, and extend some results of the growth order of solutions of systems of differential equations to systems of difference equations.展开更多
Investigating the wave field near structures in coastal and offshore engineering is of increasing significance. In the present study, simulation is done of the wave profile and flow field for waves propagating over su...Investigating the wave field near structures in coastal and offshore engineering is of increasing significance. In the present study, simulation is done of the wave profile and flow field for waves propagating over submerged bars, using PLIC-VOF (Pieeewise Linear Interface Construction) to trace the free surface of wave and finite difference method to solve vertical 2D Navier-Stokes (N-S) equations. A comparison of the numerical results for two kinds of submerged bars with the experimental ones shows that the PLIC-VOF model used in this study is effective and can compute the wave field precisely.展开更多
基金the National Natural Science Foundation of China(Grant Nos.10471100,40437017,and 60573158)Beijing Jiaotong University Science and Technology Foundation
文摘The proper orthogonal decomposition(POD)and the singular value decomposition(SVD) are used to study the finite difference scheme(FDS)for the nonstationary Navier-Stokes equations. Ensembles of data are compiled from the transient solutions computed from the discrete equation system derived from the FDS for the nonstationary Navier-Stokes equations.The optimal orthogonal bases are reconstructed by the elements of the ensemble with POD and SVD.Combining the above procedures with a Galerkin projection approach yields a new optimizing FDS model with lower dimensions and a high accuracy for the nonstationary Navier-Stokes equations.The errors between POD approximate solutions and FDS solutions are analyzed.It is shown by considering the results obtained for numerical simulations of cavity flows that the error between POD approximate solution and FDS solution is consistent with theoretical results.Moreover,it is also shown that this validates the feasibility and efficiency of POD method.
基金supported by the Natural Science Foundation of China (10471065)the Natural Science Foundation of Guangdong Province (04010474)
文摘Using Nevanlinna theory of the value distribution of meromorphic functions and Wiman-Valiron theory of entire functions, we investigate the problem of growth order of solutions of a type of systems of difference equations, and extend some results of the growth order of solutions of systems of differential equations to systems of difference equations.
文摘Investigating the wave field near structures in coastal and offshore engineering is of increasing significance. In the present study, simulation is done of the wave profile and flow field for waves propagating over submerged bars, using PLIC-VOF (Pieeewise Linear Interface Construction) to trace the free surface of wave and finite difference method to solve vertical 2D Navier-Stokes (N-S) equations. A comparison of the numerical results for two kinds of submerged bars with the experimental ones shows that the PLIC-VOF model used in this study is effective and can compute the wave field precisely.