This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either...This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.展开更多
A new model of dendritic growth and solute distribution of Fe-0.04%C binary alloys was developed, which is based on the sharp interface model of dendritic growth. This innovative model improved the cellular automaton ...A new model of dendritic growth and solute distribution of Fe-0.04%C binary alloys was developed, which is based on the sharp interface model of dendritic growth. This innovative model improved the cellular automaton method, combined with the finite difference method, considered concentration field, temperature field and the shape of molten pool. This model simulated the growth morphologies of single equiaxial crystal, the relationship between tip growth velocity and time, multi-equiaxed crystals’ growth morphologies and solute distribution, the growth of columnar crystals, columnar-to-equiaxed transition after coupling temperature field, and compared with experimental results. The results indicate that crystallographic orientation has certain influence on dendritic morphologies, that the tip growth velocity tends to be stable with the extension of time in the end, that the shape of molten pool influences the growth morphologies of columnar crystals and that the solute mainly concentrates in dendritic roots and among grain boundaries. The simulated results are in accord with experimental results.展开更多
基金supported by the NSF under Grant DMS-2208391sponsored by the NSF under Grant DMS-1753581.
文摘This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.
文摘A new model of dendritic growth and solute distribution of Fe-0.04%C binary alloys was developed, which is based on the sharp interface model of dendritic growth. This innovative model improved the cellular automaton method, combined with the finite difference method, considered concentration field, temperature field and the shape of molten pool. This model simulated the growth morphologies of single equiaxial crystal, the relationship between tip growth velocity and time, multi-equiaxed crystals’ growth morphologies and solute distribution, the growth of columnar crystals, columnar-to-equiaxed transition after coupling temperature field, and compared with experimental results. The results indicate that crystallographic orientation has certain influence on dendritic morphologies, that the tip growth velocity tends to be stable with the extension of time in the end, that the shape of molten pool influences the growth morphologies of columnar crystals and that the solute mainly concentrates in dendritic roots and among grain boundaries. The simulated results are in accord with experimental results.