In this paper, we bdefly address the application of the standard principal component analysis (PCA) technique to fault detection and identification. Based on an analysis of the existing test statistic, we propose a ...In this paper, we bdefly address the application of the standard principal component analysis (PCA) technique to fault detection and identification. Based on an analysis of the existing test statistic, we propose a new test statistic, which is similar to the Hawkin's T2 H statistic but without the numerical drawback. In comparison with the SPE index, the threshold setting associated with the new statistic is computationally simpler. Our further study is dedicated to the analysis of fault sensitivity. We consider the off-set and scaling faults, and evaluate the test statistic by viewing its sensitivity to the faults. Our final study focuses on identifying off-set and scaling faults. To this end, two algorithms are proposed. This paper also includes some critical remarks on the application of the PCA technique to fault diagnosis.展开更多
Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In ord...Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In order to get a better visualization effect, a novel fault diagnosis method which combines self-organizing map (SOM) with Fisher discriminant analysis (FDA) is proposed. FDA can reduce the dimension of the data in terms of maximizing the separability of the classes. After feature extraction by FDA, SOM can distinguish the different states on the output map clearly and it can also be employed to monitor abnormal states. Tennessee Eastman (TE) process is employed to illustrate the fault diagnosis and monitoring performance of the proposed method. The result shows that the SOM integrated with FDA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process.展开更多
文摘In this paper, we bdefly address the application of the standard principal component analysis (PCA) technique to fault detection and identification. Based on an analysis of the existing test statistic, we propose a new test statistic, which is similar to the Hawkin's T2 H statistic but without the numerical drawback. In comparison with the SPE index, the threshold setting associated with the new statistic is computationally simpler. Our further study is dedicated to the analysis of fault sensitivity. We consider the off-set and scaling faults, and evaluate the test statistic by viewing its sensitivity to the faults. Our final study focuses on identifying off-set and scaling faults. To this end, two algorithms are proposed. This paper also includes some critical remarks on the application of the PCA technique to fault diagnosis.
基金Supported by the National Basic Research Program of China (2013CB733600), the National Natural Science Foundation of China (21176073), the Doctoral Fund of Ministry of Education of China (20090074110005), the Program for New Century Excellent Talents in University (NCET-09-0346), Shu Guang Project (09SG29) and the Fundamental Research Funds for the Central Universities.
文摘Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In order to get a better visualization effect, a novel fault diagnosis method which combines self-organizing map (SOM) with Fisher discriminant analysis (FDA) is proposed. FDA can reduce the dimension of the data in terms of maximizing the separability of the classes. After feature extraction by FDA, SOM can distinguish the different states on the output map clearly and it can also be employed to monitor abnormal states. Tennessee Eastman (TE) process is employed to illustrate the fault diagnosis and monitoring performance of the proposed method. The result shows that the SOM integrated with FDA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process.