In this research work, extraction and purification of germanium from zinc leach residues(ZLR) were investigated. The results of ICP, XRF, and atomic adsorption spectroscopy(AAS) tests show that contents of germanium, ...In this research work, extraction and purification of germanium from zinc leach residues(ZLR) were investigated. The results of ICP, XRF, and atomic adsorption spectroscopy(AAS) tests show that contents of germanium, iron, lead, and zinc within the leaching residue were 105×10^(-6), 3.53%, 10.35%, and 8.8%, respectively. XRD results indicate that the main minerals were in different forms of sulfates(CaSO_4·2H_2O, PbSO_4 and ZnSO_4·6H__2O), silicate(SiO_2), and oxide(Fe_2O_3). Dissolution of leaching filter cake was carried out using 5 parameters and each in 4 levels(acid concentration, temperature, time, liquid-to-solid ratio, and stirring speed) by Taguchi method(L_(16)), and then optimization of the effective parameters by response surface method. Under optimum conditions, zinc and germanium dissolution efficiencies were 88.71% and 8%, respectively. Leaching tests with sulfuric acid(added di-ammonium oxalate monohydrate) and hydrochloric acid(HCl) on the residues obtained from previous-stage sulfuric acid dissolution, yielded germanium and iron recoveries of 83%, 88%, 40%, and 90%, respectively. Thus, leaching experiment with sulfuric acid(added di-ammonium oxalate monohydrate) was superior to that with hydrochloric acid due to high and low extraction amounts of germanium and iron, respectively. Precipitation experiments revealed that germanium purification with tannic acid presented a better result compared to sodium hydroxide and ammonia. Under optimum conditions, contents of germanium and iron in the solution after precipitation were 0.1505% and 14.7% with precipitation yields of 91% and 52%, respectively.展开更多
Soluble phosphate fertilizers have been preferably used in plant crop production. The cost of applying conventional water soluble phosphate fertilizer is high in developing countries since their manufacturing requires...Soluble phosphate fertilizers have been preferably used in plant crop production. The cost of applying conventional water soluble phosphate fertilizer is high in developing countries since their manufacturing requires importing high grade rock phosphate (RP). As a result, the use of indigenously available low-grade RP is gaining importance globally. In this study, experiments were carried out using clayey loamy alkaline soil to evaluate the agronomic efficiency of fine sized low grade RP with inorganic nitrogen fertilizers and it was further compared with that of soluble phosphate fertilizer (di-ammonium phosphate), Cicer arietinum was the test crops subjected to treatments of absolute control, di-ammonium phosphate and low grade RP with varying concentrations of ammonium sulphate or ammonium nitrate. The experiments were conducted during 2012-2013 in the bid to study the growth rate and the biomass of the crop. Tests were also performed to determine the residual effects of the fertilizers on the crops. The results revealed that the combined use of low grade RP and ammonium sulphate or ammonium nitrate, at 16 kg N/ha, resulted in an agronomic efficiency, in terms of biomass of plants, comparable to that of di-ammonium phosphate and was found to be a more attractive management option for resource-poor farmers.展开更多
Bipolar membrane electrodialysis(BMED) has already been described for the preparation of quaternary ammonium hydroxide. However, compared to quaternary ammonium hydroxide, di-quaternary ammonium hydroxide has raised g...Bipolar membrane electrodialysis(BMED) has already been described for the preparation of quaternary ammonium hydroxide. However, compared to quaternary ammonium hydroxide, di-quaternary ammonium hydroxide has raised great interest due to its high thermal stability and good oriented performance.In order to synthesize N,N-hexamethylenebis(trimethyl ammonium hydroxide)(HM(OH)_2) by EDBM,experiments designed by response surface methodology were carried out on the basis of single-factor experiments. The factors include current density, feed concentration and flow ratio of each compartment(feed compartment: base compartment: acid compartment: buffer compartment). The relationship between current efficiency and the above-mentioned three factors was quantitatively described by a multivariate regression model. According to the results, the feed concentration was the most significant factor and the optimum conditions were as follows: the current efficiency was up to 76.2%(the hydroxide conversion was over 98.6%), with a current density of 13.15 m A·cm^(-2), a feed concentration of 0.27 mol·L^(-1) and a flow ratio of 20 L·h^(-1):26 L·h^(-1):20 L·h^(-1):20 L·h^(-1) for feed compartment, base compartment, acid compartment, and intermediate compartment, respectively. This study demonstrates the optimized parameters of manufacturing HM(OH)_2 by direct splitting its halide for industrial application.展开更多
文摘In this research work, extraction and purification of germanium from zinc leach residues(ZLR) were investigated. The results of ICP, XRF, and atomic adsorption spectroscopy(AAS) tests show that contents of germanium, iron, lead, and zinc within the leaching residue were 105×10^(-6), 3.53%, 10.35%, and 8.8%, respectively. XRD results indicate that the main minerals were in different forms of sulfates(CaSO_4·2H_2O, PbSO_4 and ZnSO_4·6H__2O), silicate(SiO_2), and oxide(Fe_2O_3). Dissolution of leaching filter cake was carried out using 5 parameters and each in 4 levels(acid concentration, temperature, time, liquid-to-solid ratio, and stirring speed) by Taguchi method(L_(16)), and then optimization of the effective parameters by response surface method. Under optimum conditions, zinc and germanium dissolution efficiencies were 88.71% and 8%, respectively. Leaching tests with sulfuric acid(added di-ammonium oxalate monohydrate) and hydrochloric acid(HCl) on the residues obtained from previous-stage sulfuric acid dissolution, yielded germanium and iron recoveries of 83%, 88%, 40%, and 90%, respectively. Thus, leaching experiment with sulfuric acid(added di-ammonium oxalate monohydrate) was superior to that with hydrochloric acid due to high and low extraction amounts of germanium and iron, respectively. Precipitation experiments revealed that germanium purification with tannic acid presented a better result compared to sodium hydroxide and ammonia. Under optimum conditions, contents of germanium and iron in the solution after precipitation were 0.1505% and 14.7% with precipitation yields of 91% and 52%, respectively.
文摘Soluble phosphate fertilizers have been preferably used in plant crop production. The cost of applying conventional water soluble phosphate fertilizer is high in developing countries since their manufacturing requires importing high grade rock phosphate (RP). As a result, the use of indigenously available low-grade RP is gaining importance globally. In this study, experiments were carried out using clayey loamy alkaline soil to evaluate the agronomic efficiency of fine sized low grade RP with inorganic nitrogen fertilizers and it was further compared with that of soluble phosphate fertilizer (di-ammonium phosphate), Cicer arietinum was the test crops subjected to treatments of absolute control, di-ammonium phosphate and low grade RP with varying concentrations of ammonium sulphate or ammonium nitrate. The experiments were conducted during 2012-2013 in the bid to study the growth rate and the biomass of the crop. Tests were also performed to determine the residual effects of the fertilizers on the crops. The results revealed that the combined use of low grade RP and ammonium sulphate or ammonium nitrate, at 16 kg N/ha, resulted in an agronomic efficiency, in terms of biomass of plants, comparable to that of di-ammonium phosphate and was found to be a more attractive management option for resource-poor farmers.
文摘Bipolar membrane electrodialysis(BMED) has already been described for the preparation of quaternary ammonium hydroxide. However, compared to quaternary ammonium hydroxide, di-quaternary ammonium hydroxide has raised great interest due to its high thermal stability and good oriented performance.In order to synthesize N,N-hexamethylenebis(trimethyl ammonium hydroxide)(HM(OH)_2) by EDBM,experiments designed by response surface methodology were carried out on the basis of single-factor experiments. The factors include current density, feed concentration and flow ratio of each compartment(feed compartment: base compartment: acid compartment: buffer compartment). The relationship between current efficiency and the above-mentioned three factors was quantitatively described by a multivariate regression model. According to the results, the feed concentration was the most significant factor and the optimum conditions were as follows: the current efficiency was up to 76.2%(the hydroxide conversion was over 98.6%), with a current density of 13.15 m A·cm^(-2), a feed concentration of 0.27 mol·L^(-1) and a flow ratio of 20 L·h^(-1):26 L·h^(-1):20 L·h^(-1):20 L·h^(-1) for feed compartment, base compartment, acid compartment, and intermediate compartment, respectively. This study demonstrates the optimized parameters of manufacturing HM(OH)_2 by direct splitting its halide for industrial application.