As device-to-device(D2D) communications usually reuses the resource of cellular networks, call admission control(CAC) and power control are crucial problems. However in most power control schemes, total data rates or ...As device-to-device(D2D) communications usually reuses the resource of cellular networks, call admission control(CAC) and power control are crucial problems. However in most power control schemes, total data rates or throughput are regarded as optimization criterion. In this paper, a combining call admission control(CAC) and power control scheme under guaranteeing QoS of every user equipment(UE) is proposed. First, a simple CAC scheme is introduced. Then based on the CAC scheme, a combining call admission control and power control scheme is proposed. Next, the performance of the proposed scheme is evaluated. Finally, maximum DUE pair number and average transmitting power is calculated. Simulation results show that D2 D communications with the proposed combining call admission control and power control scheme can effectively improve the maximum DUE pair number under the premise of meeting necessary QoS.展开更多
终端直通技术(Device-to-Device,D2D)引入LTE-A蜂窝网络虽然能够提高蜂窝系统性能,但是却带来了很大的干扰。为了降低干扰,提升系统性能,如何进行资源分配成为研究的重点。首先,为了降低资源分配算法的复杂度和干扰强度,提出了D2D通信...终端直通技术(Device-to-Device,D2D)引入LTE-A蜂窝网络虽然能够提高蜂窝系统性能,但是却带来了很大的干扰。为了降低干扰,提升系统性能,如何进行资源分配成为研究的重点。首先,为了降低资源分配算法的复杂度和干扰强度,提出了D2D通信限制区域和D2D用户限制复用蜂窝用户(Cellular User Equipmen,CUE)资源区域的概念。其次,为了保证蜂窝系统服务质量(Quality of Service,Qo S)需求并提升系统性能,提出了一种D2D资源分配算法。最后,使用非线性规划问题中的乘子法来确定D2D用户和CUE的最佳发射功率,以最大化系统吞吐量。仿真结果表明,所提算法与已有方案相比能够显著提升系统的吞吐量和公平性。展开更多
In device-to-device(D2D) communications, device terminal relaying makes it possible for devices in a network to function as transmission relays for each other to enhance the spectral efficiency. In this paper we consi...In device-to-device(D2D) communications, device terminal relaying makes it possible for devices in a network to function as transmission relays for each other to enhance the spectral efficiency. In this paper we consider a cooperative D2D communication system with simultaneous wireless information and power transfer(SWIPT). The cooperative D2D communication scheme allows two nearby devices to communicate with each other in the licensed cellular bandwidth by assigning D2D transmitters as half-duplex(HD) relay to assists cellular downlink transmissions. In particular, we focus on secure information transmission for the cellular users when the idle D2D users are the potential eavesdroppers. We aim to design secure beamforming schemes to maximize the D2D users data rate while guaranteeing the secrecy rate requirements of the cellular users and the minimum required amounts of power transferred to the idle D2D users. To solve this non-convex problem, a semi-definite programming relaxation(SDR) approach is adopted to obtain the optimal solution. Furthermore, we propose two suboptimal secure beamforming schemes with low computational complexity for providing secure communication and efficient energy transfer. Simulation results demonstrate the superiority of our proposed scheme.展开更多
终端直通(device-to-device,D2D)通信技术已成为第五代移动通信(5G)中的关键技术。资源分配直接关系着D2D通信的质量,是D2D通信中的重要研究内容。该文研究了正交频分多址接入(orthogonal frequency division multiple access,OFDMA)蜂...终端直通(device-to-device,D2D)通信技术已成为第五代移动通信(5G)中的关键技术。资源分配直接关系着D2D通信的质量,是D2D通信中的重要研究内容。该文研究了正交频分多址接入(orthogonal frequency division multiple access,OFDMA)蜂窝网络中的D2D通信,用统计服务质量(quality-of-service,QoS)保证来刻画用户的时延需求,在保证蜂窝用户的干扰门限要求下,以最大化统计带QoS保证的系统吞吐量为目标,提出了有效的资源分配算法。通过Lagrange方法求解原始优化问题,提出了交替式优化算法和渐进凸近似算法。仿真表明,所提方案能有效提升系统性能。展开更多
基金supported in part by the Project of National Natural Science Foundation of China (61301110)Project of Shanghai Key Laboratory of Intelligent Information Processing, China [grant number IIPL-2014-005]+1 种基金the Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Project of Jiangsu Overseas Research & Training Program for University Prominent Young & Middle-Aged Teachers and Presidents
文摘As device-to-device(D2D) communications usually reuses the resource of cellular networks, call admission control(CAC) and power control are crucial problems. However in most power control schemes, total data rates or throughput are regarded as optimization criterion. In this paper, a combining call admission control(CAC) and power control scheme under guaranteeing QoS of every user equipment(UE) is proposed. First, a simple CAC scheme is introduced. Then based on the CAC scheme, a combining call admission control and power control scheme is proposed. Next, the performance of the proposed scheme is evaluated. Finally, maximum DUE pair number and average transmitting power is calculated. Simulation results show that D2 D communications with the proposed combining call admission control and power control scheme can effectively improve the maximum DUE pair number under the premise of meeting necessary QoS.
文摘终端直通技术(Device-to-Device,D2D)引入LTE-A蜂窝网络虽然能够提高蜂窝系统性能,但是却带来了很大的干扰。为了降低干扰,提升系统性能,如何进行资源分配成为研究的重点。首先,为了降低资源分配算法的复杂度和干扰强度,提出了D2D通信限制区域和D2D用户限制复用蜂窝用户(Cellular User Equipmen,CUE)资源区域的概念。其次,为了保证蜂窝系统服务质量(Quality of Service,Qo S)需求并提升系统性能,提出了一种D2D资源分配算法。最后,使用非线性规划问题中的乘子法来确定D2D用户和CUE的最佳发射功率,以最大化系统吞吐量。仿真结果表明,所提算法与已有方案相比能够显著提升系统的吞吐量和公平性。
基金supported in part by National Natural Science Foundation of China under Grants 61602048National Natural Science Foundation of China under Grants 61471060+1 种基金Creative Research Groups of China under Grants 61421061National Science and Technology Major Project of the Ministry of Science and Technology of China under Grants 2015ZX03001025-002
文摘In device-to-device(D2D) communications, device terminal relaying makes it possible for devices in a network to function as transmission relays for each other to enhance the spectral efficiency. In this paper we consider a cooperative D2D communication system with simultaneous wireless information and power transfer(SWIPT). The cooperative D2D communication scheme allows two nearby devices to communicate with each other in the licensed cellular bandwidth by assigning D2D transmitters as half-duplex(HD) relay to assists cellular downlink transmissions. In particular, we focus on secure information transmission for the cellular users when the idle D2D users are the potential eavesdroppers. We aim to design secure beamforming schemes to maximize the D2D users data rate while guaranteeing the secrecy rate requirements of the cellular users and the minimum required amounts of power transferred to the idle D2D users. To solve this non-convex problem, a semi-definite programming relaxation(SDR) approach is adopted to obtain the optimal solution. Furthermore, we propose two suboptimal secure beamforming schemes with low computational complexity for providing secure communication and efficient energy transfer. Simulation results demonstrate the superiority of our proposed scheme.
文摘终端直通(device-to-device,D2D)通信技术已成为第五代移动通信(5G)中的关键技术。资源分配直接关系着D2D通信的质量,是D2D通信中的重要研究内容。该文研究了正交频分多址接入(orthogonal frequency division multiple access,OFDMA)蜂窝网络中的D2D通信,用统计服务质量(quality-of-service,QoS)保证来刻画用户的时延需求,在保证蜂窝用户的干扰门限要求下,以最大化统计带QoS保证的系统吞吐量为目标,提出了有效的资源分配算法。通过Lagrange方法求解原始优化问题,提出了交替式优化算法和渐进凸近似算法。仿真表明,所提方案能有效提升系统性能。