We study the lepton pair production via the Bethe-Heitler mechanism in the deuteron breakup reaction.The complete seven-fold differential cross section is calculated with final state interactions taken into account.Th...We study the lepton pair production via the Bethe-Heitler mechanism in the deuteron breakup reaction.The complete seven-fold differential cross section is calculated with final state interactions taken into account.The deuteron bound state is described by a relativistic covariant deuteron-nucleon vertex.The numerical results indicate that the differential cross section is highly dependent on the lepton's azimuthal angle in regions of small polar angles and exhibits sharp peaks in the distribution over the invariant mass of the generated lepton pair or the two nucleons in the final state.We demonstrate that such a nearly singular feature originates from the collinearity between the produced lepton or antilepton and the incident photon,and it is physically regularized by the lepton mass in our calculation.The final state interaction between the knocked-out nucleon and recoil nucleon redistributes the differential cross section over the missing momentum,with a significant enhancement at a large missing momentum and a suppression in the intermediate region.With a further decomposition of the final state interaction contribution,It is found that the on-shell term dominates the near quasi-elastic region,while the off-shell term dominates the other end.Additionally,we examine the contribution from the interference between the proton amplitude and neutron amplitude,which,as expected,is found negligible even if the proton-neutron rescattering is included.The results of this study can serve as inputs for the analysis and background estimation of multiple exclusive measurements at Jefferson Lab and future electron-ion colliders.展开更多
In this paper we model in a new way the nuclei of deuterium and tritium. We consider the nucleons as toroids that rotate at a constant angular velocity around a line perpendicular to their rotation plane and passing t...In this paper we model in a new way the nuclei of deuterium and tritium. We consider the nucleons as toroids that rotate at a constant angular velocity around a line perpendicular to their rotation plane and passing through the center of mass of the nuclei. Based on exact analytical formulas obtained by us for the electrostatic interaction between two spheres with arbitrary radii and charges, we obtain that the known binding energy of the deuteron and triton has an electromagnetic nature. We also obtain through these formulas the force of interaction inside these nuclei. Besides that, within the framework of the classical model we use, we calculate the volumes and mass densities of the nucleons. Throughout all that we use the experimentally obtained results for the radii and masses of the nucleons and nuclei under study. Through our toroid model we confirm the main experimental results obtained for the deuteron and triton not only for the binding energy but also for the magnetic moments, spins and stability.展开更多
We explore the deuteron under strong magnetic fields in Skyrme models.The effects of the derivative dependent sextic term in the Skyrme Lagrangian are investigated,and the rational map approximation is used to de-scri...We explore the deuteron under strong magnetic fields in Skyrme models.The effects of the derivative dependent sextic term in the Skyrme Lagrangian are investigated,and the rational map approximation is used to de-scribe the deuteron.The influences of strong magnetic fields on the electric charge distribution and mass of the deu-teron arediscussed.展开更多
Deuteron separation energy is not only the basis for validating the nuclear mass models and nucleon-nucleon interaction potential,but also can determine the stability of a nuclide to certain extent.Bayesian neural net...Deuteron separation energy is not only the basis for validating the nuclear mass models and nucleon-nucleon interaction potential,but also can determine the stability of a nuclide to certain extent.Bayesian neural network(BNN)approach,which has strong predictive power and can naturally give theoretical errors of predicted values,had been successfully applied to study the different kinds of separations except the deuteron separation.In this paper,several typical nuclear mass models,such as macroscopic model BW2,macroscopic-microscopic model WS4,and microscopic model HFB-31,are chosen to study the deuteron separation energy combining BNN approach.The root-mean-square deviations of these models are partly reduced.In addition,the inclusion of physical parameters related to the pair and shell effects in the input layer can further improve the theoretical accuracy for the deuteron separation energy.The results show that the theoretical predictions are more reliable as more physical features of BNN approach are included.展开更多
We study the electromagnetic form factors and tensor polarization observables of the deuteron in the framework of the hard-wall AdS/QCD model.We find a profile function for the bulk twistτ=6 vector field,which descri...We study the electromagnetic form factors and tensor polarization observables of the deuteron in the framework of the hard-wall AdS/QCD model.We find a profile function for the bulk twistτ=6 vector field,which describes the deuteron on the boundary and fix the infrared boundary cut-off of AdS space in accordance with the ground state mass of the deuteron.We obtain the deuteron charge monopole,quadrupole,and magnetic dipole form factors and tensor polarization observables from the bulk Lagrangians for the deuteron and photon field interactions.We plot the momentum transfer dependence of the form factors and tensor polarization observables and compare our numerical results with those in the soft-wall model and experimental data.展开更多
We have inquired into a means to decrease the number of charged particles escaping from a loss cone of a magnetic mirror reactor as many as possible. We previously reported the way of installing a supplemental magneti...We have inquired into a means to decrease the number of charged particles escaping from a loss cone of a magnetic mirror reactor as many as possible. We previously reported the way of installing a supplemental magnetic mirror (which has a cyclotron heating space within) at the exit of a main magnetic bottle. The cyclotron heating space was set to increase a reflection-efficiency of the supplemental mirror. We could not suppress the loss of the escaping deuteron ions sufficiently even with a very long mirror and a very powerful electric field. Then, in this work we propose a new plan of installing another supplemental mirror besides the previous supplemental mirror. A new mirror is set perpendicularly to the center axis of the main bottle. By the addition of the perpendicular mirror, an efficiency of sending back of escaping deuteron ions is considerably theoretically improved. Also in the previous work, since we did not touch how to supply a high-frequency electric field to the cyclotron heating space, here we consider supplying it by an extraordinary-wave with a cyclotron frequency. It is mentioned that propagation of an extraordinary-wave with an electron cyclotron frequency depends on a magnetic field strength and density of escaping electrons.展开更多
The binding energy of the deuteron is estimated from the scalar strong interaction hadron theory SSI. The predicted value is 7.7% lower than the measured value. Existence of a spin 1 dineutron with a binding energy 4/...The binding energy of the deuteron is estimated from the scalar strong interaction hadron theory SSI. The predicted value is 7.7% lower than the measured value. Existence of a spin 1 dineutron with a binding energy 4/5 that of the deuteron or 1.78 MeV is predicted. This is verified by the dineutron, first observed in 2012, in <sup>16</sup>Be decay. No free dineutrons are expected to exist in nature as they can decay into deuterons. These binding energies are limited by short range strong interaction internucleon forces but consist of long range electrostatic energies from quark charges.展开更多
The D(d,p)T reaction in Be metal environments has been measured to investigate the electron screening effect in metals in an energy region of from 5.5 keV to 10 keV in a center of mass system (CMS) at a temperatur...The D(d,p)T reaction in Be metal environments has been measured to investigate the electron screening effect in metals in an energy region of from 5.5 keV to 10 keV in a center of mass system (CMS) at a temperature of 121 K. The depth distribution of deuteron density in Be metals has an impact on the observed reaction yields. A model of deuteron density distribution in metal has been proposed to obtain the original yields. A screening energy of (116±46) eV has been obtained with the assumed deuteron density distribution model.展开更多
The energy of tagged photons, which were provided from the internal photon tagging system of the Laboratory of Nuclear Science, Tohoku University, has been calibrated using the d(γ,π-pp) reaction. Charged pions an...The energy of tagged photons, which were provided from the internal photon tagging system of the Laboratory of Nuclear Science, Tohoku University, has been calibrated using the d(γ,π-pp) reaction. Charged pions and protons in the final state were detected with the Neutral Kaon Spectrometer (NKS2). Photon energies were obtained from the reaction of d(γ,π-pp). The derived photon energy was consistent with the design of the tagger system and the previous measurement using electron-positron pair production. The consistency demonstrates the performance of NKS2 and the capability of the photon energy calibration using d(γ,π-pp).展开更多
A phenomenological Lagrangian approach is employed to study the electromagnetic properties of deuteron The deuteron is regarded as a loosely bound state of a proton and a neutron. The deuteron electromagnetic form fac...A phenomenological Lagrangian approach is employed to study the electromagnetic properties of deuteron The deuteron is regarded as a loosely bound state of a proton and a neutron. The deuteron electromagnetic form factors are expressed in light-front representation in the transverse plane. The transverse charge density of the deuteron is discussed.展开更多
The multiple scattering cluster (MSC) method has been employed to perform a theoretical analysis on carbon is near edge X-ray absorption fine structure of the deuteron acetylene (C2 D2) adsorbed on Si(111)7× 7 at...The multiple scattering cluster (MSC) method has been employed to perform a theoretical analysis on carbon is near edge X-ray absorption fine structure of the deuteron acetylene (C2 D2) adsorbed on Si(111)7× 7 at room temperature. From the MSC study. it is confirmed that the (22D2 molecule is bonded to a pair of adjacent Si adatom and Si restatom with C-Si bond length about 0.18nm. The carbon-deuteron bond is bent away front the surface and the CCD bond angle is about 120°. The molecule plane tilt slightly away from the surface normal. Compared with C2D2 in gas phase, the C-C bond and C-D bond are elongated by about 0.03nm and 0.02nm respectively when acetylene was adsorbed on the subtrate. Keyowrds: adsorption of deuteron acetylene on Si(111)7×7. near edge X- ray absorption fine structure. multiple scattering cluster method展开更多
The effect of the two-photon exchange on the deuteron electromagnetic form factors is estimated based on an effective Lagrangian approach. A numerical estimate calculation of the effect is discussed. In particular, th...The effect of the two-photon exchange on the deuteron electromagnetic form factors is estimated based on an effective Lagrangian approach. A numerical estimate calculation of the effect is discussed. In particular, the effect on the polarization observables is analyzed.展开更多
The binding energies of all hydrogen isotopes have been calculated successfully for the first time in a previous paper [J Fusion Energy, 30 (2011) 377], using only the electric and magnetic Coulomb’s laws, without us...The binding energies of all hydrogen isotopes have been calculated successfully for the first time in a previous paper [J Fusion Energy, 30 (2011) 377], using only the electric and magnetic Coulomb’s laws, without using the hypothetical shell model of the nucleus and its mysterious strong force. In this paper, an elementary calculation gives the order of magnitude of the nuclear interaction. The binding energies of the deuteron and the alpha particle are then calculated by taking into account the proton induced electric dipole in the neutron. The large binding energy per nucleon of 4He, as compared to that of 2H, has been explained by a larger electric attraction combined with a lower magnetic repulsion. The binding energies have been calculated without fitting, using only fundamental laws and constants, proving that the nuclear interaction is only electromagnetic.展开更多
Photoproduction of mesons off the deuteron has been investigated at a tagged photon beam of the Bonn ELSA accelerator with the combined Crystal Barrel - TAPS electromagnetic calorimeter for incident photon energies up...Photoproduction of mesons off the deuteron has been investigated at a tagged photon beam of the Bonn ELSA accelerator with the combined Crystal Barrel - TAPS electromagnetic calorimeter for incident photon energies up to 2.5 GeV. The mesons have been detected in coincidence with recoil protons, neutrons and deuterons. This allow the measurement of meson production reactions off the quasifree nucleons bound in the deutron, as well as the coherent production off the deuteron. The comparison of quasifree proton reactions to free proton reactions can confirm or invalidate possible nuclear effects on the extracted cross section reactions. Furthermore the isospin composition of a resonance can be estimated from the comparison of quasifree proton and neutron reactions. The quasifree photoproduction of the η' and π°η mesons off nucleons and the coherent photoproduction of π°η--pairs off the deuteron are discussed.展开更多
By using a simplified Coulomb explosion model, the laser-driven Coulomb explosion processes of three deuterated alkane clusters, i.e., deuterated methane(CD4)N, ethane(C2D6)N and propane(C3D8)N clusters are simu...By using a simplified Coulomb explosion model, the laser-driven Coulomb explosion processes of three deuterated alkane clusters, i.e., deuterated methane(CD4)N, ethane(C2D6)N and propane(C3D8)N clusters are simulated numerically.The overrun phenomenon that the deuterons overtake the carbon ions inside the expanding clusters, as well as the dependence of the energetic deuterons and fusion neutron yield on cluster size, is discussed in detail. Researches show that the average kinetic energy of deuterons and neutron yield generated in the Coulomb explosion of(C2D6)N cluster are higher than those of(CD4)N cluster with the same size, in qualitative agreement with the reported conclusions from the experiments of(C2 H6)N and(CH4)N clusters. It is indicated that(C2D6)N clusters are superior to(CD4)N clusters as a target for the laser-induced nuclear fusion reaction to achieve a higher neutron yield. In addition, by comparing the relevant data of(C3D8)N cluster with those of(C2D6)N cluster with the same size, it is theoretically concluded that(C3D8)N clusters with a larger competitive parameter might be a potential candidate for improving neutron generation. This will provide a theoretical basis for target selection in developing experimental schemes on laser-driven nuclear fusion in the future.展开更多
The reactions γd→π-pp and γd→npπ+π-have been studied in an energy range from 0.8 to 1.1 GeV at the tagged photon facility of Laboratory of Nuclear Science,Tohoku University. Charged pions and protons in the fin...The reactions γd→π-pp and γd→npπ+π-have been studied in an energy range from 0.8 to 1.1 GeV at the tagged photon facility of Laboratory of Nuclear Science,Tohoku University. Charged pions and protons in the final state were measured by using the Neutral Kaon Spectrometer (NKS2). The analysis of the γd→π-pp was mainly used to check the acceptance of the NKS2 and to calibrate the tagged photon energy. The photoproduction of the Δ++Δ-was identified in the γd→npπ+π-reaction. Since the data analyses are still in progress,we issue an interim report and preliminary results.展开更多
The new parity value of π0 was determined according to the hypothesis of conservation of particle number. The theo-retical pentaquark proton’s parity value was also determined, and it was found that the conservation...The new parity value of π0 was determined according to the hypothesis of conservation of particle number. The theo-retical pentaquark proton’s parity value was also determined, and it was found that the conservation of parity is account nicely for the τ-θ puzzle.展开更多
The binding energy of the deuteron is calculated electromagnetically with the Schrödinger equation. In mainstream nuclear physics, the only known Coulomb force is the repulsion between protons, inexistent in t...The binding energy of the deuteron is calculated electromagnetically with the Schrödinger equation. In mainstream nuclear physics, the only known Coulomb force is the repulsion between protons, inexistent in the deuteron. It is ignored that a proton attracts a neutron containing electric charges with no net charge and that the magnetic moments of the nucleons interact together significantly. A static equilibrium exists in the deuteron between the electrostatic attraction and the magnetic repulsion. The Heitler equation of the hydrogen atom has been adapted to its nucleus where the centrifugal force is replaced by the magnetic repulsive force, solved graphically, by trial and error, without fit to experiment. As by chance, one obtains, at the lowest horizontal inflection point, with a few percent precision, the experimental value of the deuteron binding energy. This success, never obtained elsewhere, proves the purely static and electromagnetic nature of the nuclear energy.展开更多
Optimal condition for <sup>13</sup>N radioisotope production through <sup>12</sup>C (d,n) 13N within plasma focus device is investigated. As the deuteron spectrum follows the empirical power la...Optimal condition for <sup>13</sup>N radioisotope production through <sup>12</sup>C (d,n) 13N within plasma focus device is investigated. As the deuteron spectrum follows the empirical power law of the form E<sup>-m</sup>, it is shown that the activity decreases by increasing the value of m. Unlike the fact that the repetition rate increases the activity, it is possible to achieve higher activities by increasing the bombardment time at a fixed repetition rate.展开更多
基金Supported by the National Natural Science Foundation of China(12075003,12175117,12335006)。
文摘We study the lepton pair production via the Bethe-Heitler mechanism in the deuteron breakup reaction.The complete seven-fold differential cross section is calculated with final state interactions taken into account.The deuteron bound state is described by a relativistic covariant deuteron-nucleon vertex.The numerical results indicate that the differential cross section is highly dependent on the lepton's azimuthal angle in regions of small polar angles and exhibits sharp peaks in the distribution over the invariant mass of the generated lepton pair or the two nucleons in the final state.We demonstrate that such a nearly singular feature originates from the collinearity between the produced lepton or antilepton and the incident photon,and it is physically regularized by the lepton mass in our calculation.The final state interaction between the knocked-out nucleon and recoil nucleon redistributes the differential cross section over the missing momentum,with a significant enhancement at a large missing momentum and a suppression in the intermediate region.With a further decomposition of the final state interaction contribution,It is found that the on-shell term dominates the near quasi-elastic region,while the off-shell term dominates the other end.Additionally,we examine the contribution from the interference between the proton amplitude and neutron amplitude,which,as expected,is found negligible even if the proton-neutron rescattering is included.The results of this study can serve as inputs for the analysis and background estimation of multiple exclusive measurements at Jefferson Lab and future electron-ion colliders.
文摘In this paper we model in a new way the nuclei of deuterium and tritium. We consider the nucleons as toroids that rotate at a constant angular velocity around a line perpendicular to their rotation plane and passing through the center of mass of the nuclei. Based on exact analytical formulas obtained by us for the electrostatic interaction between two spheres with arbitrary radii and charges, we obtain that the known binding energy of the deuteron and triton has an electromagnetic nature. We also obtain through these formulas the force of interaction inside these nuclei. Besides that, within the framework of the classical model we use, we calculate the volumes and mass densities of the nucleons. Throughout all that we use the experimentally obtained results for the radii and masses of the nucleons and nuclei under study. Through our toroid model we confirm the main experimental results obtained for the deuteron and triton not only for the binding energy but also for the magnetic moments, spins and stability.
基金Supported by the Changsha Municipal Natural Science Foundation(kq2007004)the Science Research Key Project of Education Department of Hunan Province(21A0186)the Construct Program of the Key Discipline in Hunan province。
文摘We explore the deuteron under strong magnetic fields in Skyrme models.The effects of the derivative dependent sextic term in the Skyrme Lagrangian are investigated,and the rational map approximation is used to de-scribe the deuteron.The influences of strong magnetic fields on the electric charge distribution and mass of the deu-teron arediscussed.
基金Supported by National Natural Science Foundation of China (12065003)Central Government Guidance Funds for Local Scientific and Technological Development of China (Guike ZY22096024)+1 种基金Natural Science Foundation of Guangxi (2019GXNSFDA185011)Scientific Research and Technology Development Project of Guilin (20210104-2)。
文摘Deuteron separation energy is not only the basis for validating the nuclear mass models and nucleon-nucleon interaction potential,but also can determine the stability of a nuclide to certain extent.Bayesian neural network(BNN)approach,which has strong predictive power and can naturally give theoretical errors of predicted values,had been successfully applied to study the different kinds of separations except the deuteron separation.In this paper,several typical nuclear mass models,such as macroscopic model BW2,macroscopic-microscopic model WS4,and microscopic model HFB-31,are chosen to study the deuteron separation energy combining BNN approach.The root-mean-square deviations of these models are partly reduced.In addition,the inclusion of physical parameters related to the pair and shell effects in the input layer can further improve the theoretical accuracy for the deuteron separation energy.The results show that the theoretical predictions are more reliable as more physical features of BNN approach are included.
文摘We study the electromagnetic form factors and tensor polarization observables of the deuteron in the framework of the hard-wall AdS/QCD model.We find a profile function for the bulk twistτ=6 vector field,which describes the deuteron on the boundary and fix the infrared boundary cut-off of AdS space in accordance with the ground state mass of the deuteron.We obtain the deuteron charge monopole,quadrupole,and magnetic dipole form factors and tensor polarization observables from the bulk Lagrangians for the deuteron and photon field interactions.We plot the momentum transfer dependence of the form factors and tensor polarization observables and compare our numerical results with those in the soft-wall model and experimental data.
文摘We have inquired into a means to decrease the number of charged particles escaping from a loss cone of a magnetic mirror reactor as many as possible. We previously reported the way of installing a supplemental magnetic mirror (which has a cyclotron heating space within) at the exit of a main magnetic bottle. The cyclotron heating space was set to increase a reflection-efficiency of the supplemental mirror. We could not suppress the loss of the escaping deuteron ions sufficiently even with a very long mirror and a very powerful electric field. Then, in this work we propose a new plan of installing another supplemental mirror besides the previous supplemental mirror. A new mirror is set perpendicularly to the center axis of the main bottle. By the addition of the perpendicular mirror, an efficiency of sending back of escaping deuteron ions is considerably theoretically improved. Also in the previous work, since we did not touch how to supply a high-frequency electric field to the cyclotron heating space, here we consider supplying it by an extraordinary-wave with a cyclotron frequency. It is mentioned that propagation of an extraordinary-wave with an electron cyclotron frequency depends on a magnetic field strength and density of escaping electrons.
文摘The binding energy of the deuteron is estimated from the scalar strong interaction hadron theory SSI. The predicted value is 7.7% lower than the measured value. Existence of a spin 1 dineutron with a binding energy 4/5 that of the deuteron or 1.78 MeV is predicted. This is verified by the dineutron, first observed in 2012, in <sup>16</sup>Be decay. No free dineutrons are expected to exist in nature as they can decay into deuterons. These binding energies are limited by short range strong interaction internucleon forces but consist of long range electrostatic energies from quark charges.
基金Supported by National Natural Science Foundation of China (10675056)
文摘The D(d,p)T reaction in Be metal environments has been measured to investigate the electron screening effect in metals in an energy region of from 5.5 keV to 10 keV in a center of mass system (CMS) at a temperature of 121 K. The depth distribution of deuteron density in Be metals has an impact on the observed reaction yields. A model of deuteron density distribution in metal has been proposed to obtain the original yields. A screening energy of (116±46) eV has been obtained with the assumed deuteron density distribution model.
基金Supported by a Grant-in-Aid (16GS0201) for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
文摘The energy of tagged photons, which were provided from the internal photon tagging system of the Laboratory of Nuclear Science, Tohoku University, has been calibrated using the d(γ,π-pp) reaction. Charged pions and protons in the final state were detected with the Neutral Kaon Spectrometer (NKS2). Photon energies were obtained from the reaction of d(γ,π-pp). The derived photon energy was consistent with the design of the tagger system and the previous measurement using electron-positron pair production. The consistency demonstrates the performance of NKS2 and the capability of the photon energy calibration using d(γ,π-pp).
基金Supported by National Natural Science Foundation of China(10975146,11035006,11261130,11165005)DFGthe NSFC through funds provided to the Sino-Germen CRC 110"Symmetries and the Emergence of Structure in QCD"
文摘A phenomenological Lagrangian approach is employed to study the electromagnetic properties of deuteron The deuteron is regarded as a loosely bound state of a proton and a neutron. The deuteron electromagnetic form factors are expressed in light-front representation in the transverse plane. The transverse charge density of the deuteron is discussed.
基金The authors acknowledge the financial support of the National Natural Science Foun-dation of China (Grant No.19974036)
文摘The multiple scattering cluster (MSC) method has been employed to perform a theoretical analysis on carbon is near edge X-ray absorption fine structure of the deuteron acetylene (C2 D2) adsorbed on Si(111)7× 7 at room temperature. From the MSC study. it is confirmed that the (22D2 molecule is bonded to a pair of adjacent Si adatom and Si restatom with C-Si bond length about 0.18nm. The carbon-deuteron bond is bent away front the surface and the CCD bond angle is about 120°. The molecule plane tilt slightly away from the surface normal. Compared with C2D2 in gas phase, the C-C bond and C-D bond are elongated by about 0.03nm and 0.02nm respectively when acetylene was adsorbed on the subtrate. Keyowrds: adsorption of deuteron acetylene on Si(111)7×7. near edge X- ray absorption fine structure. multiple scattering cluster method
基金Supported by National Natural Science Foundation of China (10775148,10975146)
文摘The effect of the two-photon exchange on the deuteron electromagnetic form factors is estimated based on an effective Lagrangian approach. A numerical estimate calculation of the effect is discussed. In particular, the effect on the polarization observables is analyzed.
文摘The binding energies of all hydrogen isotopes have been calculated successfully for the first time in a previous paper [J Fusion Energy, 30 (2011) 377], using only the electric and magnetic Coulomb’s laws, without using the hypothetical shell model of the nucleus and its mysterious strong force. In this paper, an elementary calculation gives the order of magnitude of the nuclear interaction. The binding energies of the deuteron and the alpha particle are then calculated by taking into account the proton induced electric dipole in the neutron. The large binding energy per nucleon of 4He, as compared to that of 2H, has been explained by a larger electric attraction combined with a lower magnetic repulsion. The binding energies have been calculated without fitting, using only fundamental laws and constants, proving that the nuclear interaction is only electromagnetic.
基金Supported by Schweizerischer Nationalfonds and Deutsche Forschungsgemeinschaft (SFB/TR-16)
文摘Photoproduction of mesons off the deuteron has been investigated at a tagged photon beam of the Bonn ELSA accelerator with the combined Crystal Barrel - TAPS electromagnetic calorimeter for incident photon energies up to 2.5 GeV. The mesons have been detected in coincidence with recoil protons, neutrons and deuterons. This allow the measurement of meson production reactions off the quasifree nucleons bound in the deutron, as well as the coherent production off the deuteron. The comparison of quasifree proton reactions to free proton reactions can confirm or invalidate possible nuclear effects on the extracted cross section reactions. Furthermore the isospin composition of a resonance can be estimated from the comparison of quasifree proton and neutron reactions. The quasifree photoproduction of the η' and π°η mesons off nucleons and the coherent photoproduction of π°η--pairs off the deuteron are discussed.
基金supported by the National Natural Science Foundation of China(Grant No.11005080)
文摘By using a simplified Coulomb explosion model, the laser-driven Coulomb explosion processes of three deuterated alkane clusters, i.e., deuterated methane(CD4)N, ethane(C2D6)N and propane(C3D8)N clusters are simulated numerically.The overrun phenomenon that the deuterons overtake the carbon ions inside the expanding clusters, as well as the dependence of the energetic deuterons and fusion neutron yield on cluster size, is discussed in detail. Researches show that the average kinetic energy of deuterons and neutron yield generated in the Coulomb explosion of(C2D6)N cluster are higher than those of(CD4)N cluster with the same size, in qualitative agreement with the reported conclusions from the experiments of(C2 H6)N and(CH4)N clusters. It is indicated that(C2D6)N clusters are superior to(CD4)N clusters as a target for the laser-induced nuclear fusion reaction to achieve a higher neutron yield. In addition, by comparing the relevant data of(C3D8)N cluster with those of(C2D6)N cluster with the same size, it is theoretically concluded that(C3D8)N clusters with a larger competitive parameter might be a potential candidate for improving neutron generation. This will provide a theoretical basis for target selection in developing experimental schemes on laser-driven nuclear fusion in the future.
文摘The reactions γd→π-pp and γd→npπ+π-have been studied in an energy range from 0.8 to 1.1 GeV at the tagged photon facility of Laboratory of Nuclear Science,Tohoku University. Charged pions and protons in the final state were measured by using the Neutral Kaon Spectrometer (NKS2). The analysis of the γd→π-pp was mainly used to check the acceptance of the NKS2 and to calibrate the tagged photon energy. The photoproduction of the Δ++Δ-was identified in the γd→npπ+π-reaction. Since the data analyses are still in progress,we issue an interim report and preliminary results.
文摘The new parity value of π0 was determined according to the hypothesis of conservation of particle number. The theo-retical pentaquark proton’s parity value was also determined, and it was found that the conservation of parity is account nicely for the τ-θ puzzle.
文摘The binding energy of the deuteron is calculated electromagnetically with the Schrödinger equation. In mainstream nuclear physics, the only known Coulomb force is the repulsion between protons, inexistent in the deuteron. It is ignored that a proton attracts a neutron containing electric charges with no net charge and that the magnetic moments of the nucleons interact together significantly. A static equilibrium exists in the deuteron between the electrostatic attraction and the magnetic repulsion. The Heitler equation of the hydrogen atom has been adapted to its nucleus where the centrifugal force is replaced by the magnetic repulsive force, solved graphically, by trial and error, without fit to experiment. As by chance, one obtains, at the lowest horizontal inflection point, with a few percent precision, the experimental value of the deuteron binding energy. This success, never obtained elsewhere, proves the purely static and electromagnetic nature of the nuclear energy.
文摘Optimal condition for <sup>13</sup>N radioisotope production through <sup>12</sup>C (d,n) 13N within plasma focus device is investigated. As the deuteron spectrum follows the empirical power law of the form E<sup>-m</sup>, it is shown that the activity decreases by increasing the value of m. Unlike the fact that the repetition rate increases the activity, it is possible to achieve higher activities by increasing the bombardment time at a fixed repetition rate.