期刊文献+
共找到83篇文章
< 1 2 5 >
每页显示 20 50 100
Multi-block SSD based on small object detection for UAV railway scene surveillance 被引量:26
1
作者 Yundong LI Han DONG +3 位作者 Hongguang LI Xueyan ZHANG Baochang ZHANG Zhifeng XIAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第6期1747-1755,共9页
A method of multi-block Single Shot Multi Box Detector(SSD)based on small object detection is proposed to the railway scene of unmanned aerial vehicle surveillance.To address the limitation of small object detection,a... A method of multi-block Single Shot Multi Box Detector(SSD)based on small object detection is proposed to the railway scene of unmanned aerial vehicle surveillance.To address the limitation of small object detection,a multi-block SSD mechanism,which consists of three steps,is designed.First,the original input images are segmented into several overlapped patches.Second,each patch is separately fed into an SSD to detect the objects.Third,the patches are merged together through two stages.In the first stage,the truncated object of the sub-layer detection result is spliced.In the second stage,a sub-layer suppression and filtering algorithm applying the concept of non-maximum suppression is utilized to remove the overlapped boxes of sub-layers.The boxes that are not detected in the main-layer are retained.In addition,no sufficient labeled training samples of railway circumstance are available,thereby hindering the deployment of SSD.A two-stage training strategy leveraging to transfer learning is adopted to solve this issue.The deep learning model is preliminarily trained using labeled data of numerous auxiliaries,and then it is refined using only a few samples of railway scene.A railway spot in China,which is easily damaged by landslides,is investigated as a case study.Experimental results show that the proposed multi-block SSD method produces an overall accuracy of 96.6%and obtains an improvement of up to 9.2%compared with the traditional SSD. 展开更多
关键词 Deep learning Multi-block Single Shot MultiBox detector(ssd) Objection detection Railway scene Unmanned aerial vehicle remote sensing
原文传递
基于深度学习的运动目标实时识别与定位 被引量:5
2
作者 童基均 常晓龙 +1 位作者 赵英杰 蒋路茸 《计算机系统应用》 2018年第8期28-34,共7页
针对人体运动目标的实时检测与定位问题,采用深度学习的方法进行研究.在Caffe框架下,采用SSD(Single Shot multibox Detector)检测方法.以VGG16作为基础网络模型,增加额外特征卷积层,提取多尺度的卷积特征.然后对实验数据集进行迭代训练... 针对人体运动目标的实时检测与定位问题,采用深度学习的方法进行研究.在Caffe框架下,采用SSD(Single Shot multibox Detector)检测方法.以VGG16作为基础网络模型,增加额外特征卷积层,提取多尺度的卷积特征.然后对实验数据集进行迭代训练,得到运动目标检测模型.利用训练好的模型,通过2路摄像机检测运动目标,并双目视觉定位.实验结果表明,整个系统运行速度可达40 fps,在10 m×10 m的场景下,平均定位误差在6 cm以内,在速度和精度上均有很好的表现,为大中型场景的人体运动实时检测定位问题提供了有效的解决方案. 展开更多
关键词 深度学习 SINGLE Shot multibox detector(ssd) 实时检测 双目视觉定位
下载PDF
A method for robust TV logo detection
3
作者 Pan Da Shi Ping +2 位作者 Ying Zefeng Hou Ming Han Mingliang 《High Technology Letters》 EI CAS 2019年第2期144-152,共9页
A robust TV logo detection method based on the modified single shot multibox detector (SSD) is presented. Unlike most other existing methods which can only detect the TV logo from video frames, the proposed method can... A robust TV logo detection method based on the modified single shot multibox detector (SSD) is presented. Unlike most other existing methods which can only detect the TV logo from video frames, the proposed method can also detect the TV logo from photo pictures taken by smartphones or other smart terminals. Firstly, using a simple and effective way of collecting and labelling TV logo, a large-scale TV logo dataset used to train the detection model is built. Then, parameters and loss function of SSD are modified to make it more suitable for the task of TV logo detection. Moreover, a soft-NMS algorithm is introduced to remove the redundant overlapping boxes and obtain the final output box. And also an approach for hard example mining is designed to improve the detection accuracy. Finally, extensive comparison experiments are carried out which take into consideration different image resolutions, logo positions and environmental factors existing in real-world applications. Experimental results demonstrate that the proposed method achieve superior performances in robustness compared to other state-of-the-art methods. 展开更多
关键词 single shot multibox detector(ssd) TV logo detection TV logo dataset loss function hard example mining
下载PDF
多尺度卷积特征融合的SSD目标检测算法 被引量:54
4
作者 陈幻杰 王琦琦 +4 位作者 杨国威 韩佳林 尹成娟 陈隽 王以忠 《计算机科学与探索》 CSCD 北大核心 2019年第6期1049-1061,共13页
提出了一种改进的多尺度卷积特征目标检测方法,用以提高SSD(single shot multibox detector)模型对中目标和小目标的检测精确度。该方法先对SSD模型低层特征层采用区域放大提取的方法以提高对小目标的检测能力,再对高层特征层进行特征... 提出了一种改进的多尺度卷积特征目标检测方法,用以提高SSD(single shot multibox detector)模型对中目标和小目标的检测精确度。该方法先对SSD模型低层特征层采用区域放大提取的方法以提高对小目标的检测能力,再对高层特征层进行特征提取以改善中目标的检测效果。最后,利用SSD模型中原有的多尺度卷积检测方法,将改进的多层特征检测结果进行融合,并通过参数再训练以获得最终改进的SSD模型。实验结果表明,该方法在MS COCO数据集上对中目标和小目标的测试精确度分别为75.1%和40.5%,相比于原有SSD模型分别提升16.3%和23.1%。 展开更多
关键词 单次多框目标检测器(ssd)模型 多尺度特征融合 目标检测 深度学习
下载PDF
基于边缘计算与深度学习的输电设备异物检测方法 被引量:35
5
作者 路艳巧 孙翠英 +1 位作者 曹红卫 闫红伟 《中国电力》 CSCD 北大核心 2020年第6期27-33,共7页
在输电设备上经常会出现各种异物,如鸟巢、塑料袋,如果不能及时发现并清理将会对输电系统造成很大的安全隐患。因此,及时对输电设备是否有异物进行检测非常必要。针对该问题,提出了一种基于边缘计算和深度学习的异物检测方法。该方法与... 在输电设备上经常会出现各种异物,如鸟巢、塑料袋,如果不能及时发现并清理将会对输电系统造成很大的安全隐患。因此,及时对输电设备是否有异物进行检测非常必要。针对该问题,提出了一种基于边缘计算和深度学习的异物检测方法。该方法与现有利用无人机拍摄传回云端服务器计算方法不同,通过将检测计算下沉到边缘设备,使用Mobilenet加上优化后SSD的目标检测方法在边缘设备直接处理计算,将检测出异物的图像发回云端。该方法在CPU上的运行速度是基于VGG(目视图像生成器)的SSD方法的5倍左右,是Faster-RCNN的58倍左右;在模型大小上是基于VGG的SSD方法的2/9左右,是Faster-RCNN的2/49左右,精确度为89%;与直接将数据传回云端服务器再进行处理的方式相比,数据传输量减少约90%。该方法不仅满足实时性,还具有可靠的效果,基于该方法的系统已经得到实际部署。 展开更多
关键词 异物检测 边缘计算 卷积神经网络 Mobilenet ssd
下载PDF
基于多尺度融合SSD的小目标检测算法 被引量:32
6
作者 赵亚男 吴黎明 陈琦 《计算机工程》 CAS CSCD 北大核心 2020年第1期247-254,共8页
针对一阶段目标检测算法在识别小目标时无法兼顾精度与实时性的问题,提出一种基于多尺度融合单点多盒探测器(SSD)的小目标检测算法。以SSD和DSSD算法的网络结构为基础,设计融合模块以实现Top-Down结构的功能,形成高层网络与低层网络之... 针对一阶段目标检测算法在识别小目标时无法兼顾精度与实时性的问题,提出一种基于多尺度融合单点多盒探测器(SSD)的小目标检测算法。以SSD和DSSD算法的网络结构为基础,设计融合模块以实现Top-Down结构的功能,形成高层网络与低层网络之间的跳跃连接,结合SSD-VGG16扩展卷积特征图以提取多尺度特征,并对不同卷积层、尺度及特征的多元信息进行分类预测与位置回归。在织物瑕疵数据库上的实验结果表明,与SSD、DSSD等算法相比,该算法的检测性能较好,其检测精度达到78.2%,检测速度为51 frame/s,能在保证检测精度的同时提高检测速度。 展开更多
关键词 单点多盒探测器 多尺度融合 目标检测 小目标 VGG16网络结构
下载PDF
改进SSD的安全帽检测方法 被引量:28
7
作者 李明山 韩清鹏 +1 位作者 张天宇 王道累 《计算机工程与应用》 CSCD 北大核心 2021年第8期192-197,共6页
施工人员佩戴安全帽是安全生产的重要一环,为保障工人生命安全,同时克服传统人工巡检费时费力的缺点,提出了一种基于Single Shot MultiBox Detector(SSD)改进的安全帽检测新方法。针对安全帽数据集内目标尺度偏小,尺度分布不均衡,对SSD... 施工人员佩戴安全帽是安全生产的重要一环,为保障工人生命安全,同时克服传统人工巡检费时费力的缺点,提出了一种基于Single Shot MultiBox Detector(SSD)改进的安全帽检测新方法。针对安全帽数据集内目标尺度偏小,尺度分布不均衡,对SSD模型结构进行改进,添加用以特征融合的分支网络,增强浅层特征图语义,引入该网络后SSD300的mAP-50(mean Average Precision)相应提升2.3个百分点,且SSD300实时检测速率仅降低1.3 frame/s,达到39.6 frame/s。为使SSD模型的先验框与有效感受野匹配,对SSD默认框设置方法进行改进,引入可变参数间接调节先验框大小,改进后的SSD300与SSD512的mAP分别达到74.6%与82.5%。安全帽数据集测试结果表明,改进后的SSD模型对安全帽佩戴检测具有优秀的准确性与良好的实时性,基本满足实际应用需求。 展开更多
关键词 深度学习 计算机视觉 ssd 安全帽检测 特征融合 小目标
下载PDF
基于SSD和MobileNet网络的目标检测方法的研究 被引量:27
8
作者 任宇杰 杨剑 +1 位作者 刘方涛 张启尧 《计算机科学与探索》 CSCD 北大核心 2019年第11期1881-1893,共13页
为了提高计算机视觉中目标检测的一种基本模型SSD在多任务场景中的准确率和效率,基于深度学习的相关理论研究,结合一种轻量级的深层神经网络MobileNet的基本思想,构建了一种结合特征金字塔的多尺度卷积神经网络结构。利用Tensorflow平... 为了提高计算机视觉中目标检测的一种基本模型SSD在多任务场景中的准确率和效率,基于深度学习的相关理论研究,结合一种轻量级的深层神经网络MobileNet的基本思想,构建了一种结合特征金字塔的多尺度卷积神经网络结构。利用Tensorflow平台完成了以下一些工作:第一,对低层卷积层的特征图进行区域放大,保留更多的目标特征信息,再对高特征层进行特征提取;第二,在对重叠目标候选区域进行过滤的时候,基于非极大值抑制的方法和思想设置阈值消除冗余的目标候选区域,使得产生的负样本的数目减少,使模型效果逐步趋于稳定;第三,针对目标检测中的预测区域与真实区域在匹配过程中所产生的正负样本进行处理,用于保证模型的稳定性等。基于以上方法研究,使得模型对多目标识别的速度有所加快,鲁棒性更好,准确率更高,同时也适当降低了对硬件配置资源的需求。 展开更多
关键词 多尺度卷积特征 ssd模型 MobileNet 图像目标检测
下载PDF
注意力机制改进轻量SSD模型的海面小目标检测 被引量:22
9
作者 贾可心 马正华 +1 位作者 朱蓉 李永刚 《中国图象图形学报》 CSCD 北大核心 2022年第4期1161-1175,共15页
目的海面目标检测图像中的小目标数量居多,而基于深度学习的目标检测方法通常针对通用目标数据集设计检测模型,对图像中的小目标检测效果并不理想。使用一般目标检测模型检测海面目标图像的特征时,通常会出现小目标漏检情况,而一些特定... 目的海面目标检测图像中的小目标数量居多,而基于深度学习的目标检测方法通常针对通用目标数据集设计检测模型,对图像中的小目标检测效果并不理想。使用一般目标检测模型检测海面目标图像的特征时,通常会出现小目标漏检情况,而一些特定的小目标检测模型对海面目标的检测效果还有待验证。为此,在标准的SSD(single shot multi Box detector)目标检测模型基础上,结合Xception深度可分卷积,提出一种轻量SSD模型用于海面目标检测。方法在标准的SSD目标检测模型基础上,使用基于Xception网络的深度可分卷积特征提取网络替换VGG-16(Visual Geometry Group network-16)骨干网络,通过控制变量来对比不同网络的检测效果;在特征提取网络中的exit flow层和Conv1层引入轻量级注意力机制模块来提高检测精度,并与在其他层引入轻量级注意力机制模块的模型进行检测效果对比;使用注意力机制改进的轻量SSD目标检测模型和其他几种模型分别对海面目标检测数据集中的小目标和正常目标进行测试。结果为证明本文模型的有效性,进行了多组对比实验。实验结果表明,模型轻量化导致特征表达能力降低,从而影响检测精度。相对于标准的SSD目标检测模型,本文模型在参数量降低16.26%、浮点运算量降低15.65%的情况下,浮标的平均检测精度提高了1.1%,漏检率减小了3%,平均精度均值(mean average precision,mAP)提高了0.51%,同时,保证了船的平均检测精度,并保证其漏检率不升高,在对数据集中的小目标进行测试时,本文模型也表现出较好的检测效果。结论本文提出的海面小目标检测模型,能够在压缩模型的同时,保证模型的检测速度和检测精度,达到网络轻量化的效果,并且降低了小目标的漏检率,可以有效实现对海面小目标的检测。 展开更多
关键词 深度学习 目标检测 注意力机制 深度可分卷积 ssd 海面小目标检测
原文传递
基于深度卷积神经网络的SAR舰船目标检测 被引量:23
10
作者 杨龙 苏娟 李响 《系统工程与电子技术》 EI CSCD 北大核心 2019年第9期1990-1997,共8页
针对传统合成孔径雷达(synthetic aperture radar,SAR)图像舰船目标检测算法检测精度易受斑点噪声影响,且只能提取底层特征及其泛化性较差的问题,提出了一种基于深度卷积神经网络的SAR图像舰船目标检测算法。首先将目前先进的单次多盒... 针对传统合成孔径雷达(synthetic aperture radar,SAR)图像舰船目标检测算法检测精度易受斑点噪声影响,且只能提取底层特征及其泛化性较差的问题,提出了一种基于深度卷积神经网络的SAR图像舰船目标检测算法。首先将目前先进的单次多盒检测器(single shot multibox detector,SSD)检测算法应用到SAR图像舰船目标检测领域,指出了其在该领域存在的局限性,在此基础上提出了基于SSD的新的检测方法,包括融合上下文信息,迁移模型学习,在公开的SSDD数据集上进行了训练和测试,对实验结果进行了对比分析,实验结果表明,相比于原始的SSD检测算法,所提出的方法不仅提高了目标检测精度,同时也保证了算法的检测效率。 展开更多
关键词 舰船目标检测 单次多盒检测器检测算法 深度卷积神经网络
下载PDF
用于内河船舶目标检测的单次多框检测器算法 被引量:22
11
作者 王言鹏 杨飏 姚远 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2019年第7期1258-1262,共5页
针对传统目标检测算法在内河水运环境受外界条件影响过大的问题,本文提出了基于单次多框检测器的内河船舶目标检测方法。单次多框检测器模型基于卷积神经网络,使用全图各个位置的多尺度区域特征进行回归,使图像可以直接作为网络的输入,... 针对传统目标检测算法在内河水运环境受外界条件影响过大的问题,本文提出了基于单次多框检测器的内河船舶目标检测方法。单次多框检测器模型基于卷积神经网络,使用全图各个位置的多尺度区域特征进行回归,使图像可以直接作为网络的输入,避免了由于波浪、树叶晃动等外界因素产生的误检。同时,对于内河船舶样本不足的问题,应用样本增强和迁徙学习的方法训练船舶目标检测的网络模型,有效缓解了训练过程中的过拟合现象,取得了较好的检测效果。经内河不同地区的多组船舶视频检测表明:此方法具有更好的鲁棒性和更低的误检率,船舶的识别率均超过了90%,比传统的背景建模算法提高16%以上。 展开更多
关键词 目标检测 背景建模 内河 卷积神经网络 单次多框检测器 样本增强
下载PDF
基于改进SSD的航拍城市道路车辆检测方法 被引量:20
12
作者 宋世奇 李旭 +3 位作者 祝雪芬 杨峰 武文翀 吴琳琦 《传感器与微系统》 CSCD 北大核心 2021年第1期114-117,共4页
为提升无人机(UAV)航拍视角下城市道路车辆检测性能,基于SSD深度学习网络框架,改进并搭建了一种航拍城市道路车辆检测网络。一方面充分挖掘无人机航拍视角下车辆多为小目标的先验知识,利用K-means++聚类算法获取适应航拍车辆目标的默认... 为提升无人机(UAV)航拍视角下城市道路车辆检测性能,基于SSD深度学习网络框架,改进并搭建了一种航拍城市道路车辆检测网络。一方面充分挖掘无人机航拍视角下车辆多为小目标的先验知识,利用K-means++聚类算法获取适应航拍车辆目标的默认候选框参数信息;另一方面,为保证小尺度目标特征的有效传递和准确提取,对基准SSD网络结构进行改进,在其特征提取网络骨架中加入了具有抗混叠效应的可学习低通滤波层,并保留用于小尺度车辆目标检测回归的大尺寸特征图。实验表明:在满足实时性的情况下,所提方法与基准SSD网络相比,检测精度提升了4.3个百分点,能够明显改善小尺度车辆目标检测效果,提高了无人机航拍视角下城市道路车辆目标整体检测精度。 展开更多
关键词 智能交通 航拍图像 ssd 车辆检测
下载PDF
基于自注意力的SSD图像目标检测算法 被引量:18
13
作者 储岳中 黄勇 +1 位作者 张学锋 刘恒 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第9期70-75,共6页
基于深度学习的方法,运用单次多框检测器(SSD)目标检测框架和自注意力机制,针对施工人员佩戴安全帽数据集进行神经网络训练.通过调整原始SSD目标检测框架中的参数,并向SSD目标检测框架中添加自注意力模块来计算特征图中像素点之间相互影... 基于深度学习的方法,运用单次多框检测器(SSD)目标检测框架和自注意力机制,针对施工人员佩戴安全帽数据集进行神经网络训练.通过调整原始SSD目标检测框架中的参数,并向SSD目标检测框架中添加自注意力模块来计算特征图中像素点之间相互影响,以提高算法对目标检测的关注度,扩大卷积神经网络的感受野,从而提高目标检测的准确率.实验结果表明:改进算法在应对小目标检测以及目标之间的遮挡方面有很好的适应性,同时与其他检测算法相比,检测成功率有明显提高. 展开更多
关键词 单次多框检测器(ssd) 卷积神经网络 自注意力 目标检测 安全帽检测
原文传递
基于深度学习水果检测的研究与改进 被引量:18
14
作者 黄豪杰 段先华 黄欣辰 《计算机工程与应用》 CSCD 北大核心 2020年第3期127-133,共7页
为实现自然环境下水果自动化采摘存在受环境和障碍物等因素造成的问题,导致目标水果检测准确率不高,泛化性不强等实际问题,以苹果、橘子、香蕉三种水果作为研究对象,提出一种基于深度学习的SSD(Single Shot Detector)改进模型。经典SSD... 为实现自然环境下水果自动化采摘存在受环境和障碍物等因素造成的问题,导致目标水果检测准确率不高,泛化性不强等实际问题,以苹果、橘子、香蕉三种水果作为研究对象,提出一种基于深度学习的SSD(Single Shot Detector)改进模型。经典SSD采用多尺度特征融合的方式,从网络不同层抽取不同尺度的特征做预测,但是没有用到足够低层的特征,使得小物体的检测效果较差。通过将经典SSD训练使用的VGG16输入模型替换为ResNet-101,利用特征金字塔网络(FPN)结构将高层特征通过上采样和低层特征做融合。实验表明,改进的SSD300和SSD512水果检测模型的平均检测精度为83.05%和84.24%,经数据增强后精度也有所提升,适合于自然环境下水果的精确检测。 展开更多
关键词 深度学习 目标检测 ssd模型 ResNet-101模型 特征金字塔网络(FPN)
下载PDF
复杂背景下的小目标检测算法 被引量:17
15
作者 郑浦 白宏阳 +1 位作者 李伟 郭宏伟 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第9期1777-1784,共8页
提出一种改进的多类别单阶检测器(SSD)算法.借鉴特征金字塔算法的思想,将Conv4-3层的特征与Conv7、Conv3-3层的特征进行融合,同时增加融合后特征图每个位置对应的默认框数量.在网络结构中增加裁剪-权重分配网络(SENet),对每层的特征通... 提出一种改进的多类别单阶检测器(SSD)算法.借鉴特征金字塔算法的思想,将Conv4-3层的特征与Conv7、Conv3-3层的特征进行融合,同时增加融合后特征图每个位置对应的默认框数量.在网络结构中增加裁剪-权重分配网络(SENet),对每层的特征通道进行权重分配,提升有用的特征权重并抑制无效的特征权重.为了增强网络的泛化能力,对训练数据集进行一系列增强处理.实验结果表明,改进后的算法在VOC数据集(07+12)上的检测效果良好,平均精度均值为80.4%,比改进前的算法提高了2.7%;在COCO数据集(2017)上的平均精度均值为42.5%,比改进前的算法提高了2.3%.所提算法能够准确检测出不小于16×16像素的目标. 展开更多
关键词 深度学习 目标检测 多类别单阶检测器(ssd)算法 特征融合 特征增强
下载PDF
基于空间-通道注意力的改进SSD目标检测算法 被引量:14
16
作者 许光宇 尹孟园 《光电子.激光》 CAS CSCD 北大核心 2021年第9期970-978,共9页
目标检测的任务是精确识别,有效定位出图像中目标物体,且预定义其类别。针对主流目标检测(single shot multibox detector,SSD)算法存在小目标检测准确度不高,检测效率较低等问题,提出一种基于空间-通道注意力机制的SSD目标检测算法(spa... 目标检测的任务是精确识别,有效定位出图像中目标物体,且预定义其类别。针对主流目标检测(single shot multibox detector,SSD)算法存在小目标检测准确度不高,检测效率较低等问题,提出一种基于空间-通道注意力机制的SSD目标检测算法(spatial and channel single shot multibox detector,SC_SSD)。通过在SSD深层网络引入空间-通道注意力机制增强高层特征图语义信息,提高算法获取目标物体的细节与位置信息的能力,从而降低漏检率及误检率,并提高小目标物体检测的准确度。此外,利用MobileNetV2中的深度可分离卷积对SSD主干网络(visual geometry group network,VGG-16)进行剪枝处理,降低参数量,从而减少训练与检测的时间。在PASCAL VOC2007数据集上进行实验,本文算法检测的精确度与速度分别为78.9%与59.4 Fps,比SSD算法提升了3.2%与26.7 Fps,满足实时性需求。算法也优于相比较的其他算法,是一种有效可行的目标检测算法。 展开更多
关键词 目标检测 single shot multibox detector(ssd)算法 空间-通道注意力机制 小目标
原文传递
基于深度学习的水面无人船前方船只图像识别方法 被引量:16
17
作者 王贵槐 谢朔 +1 位作者 初秀民 洛天骄 《船舶工程》 CSCD 北大核心 2018年第4期19-22,99,共5页
建立基于图像识别系统的水面无人船(USV)感知平台,采集内河船舶图片数据库建立船只单次多重检测(SSD)深度学习框架,通过使用预训练模型参数调优并微调分类框架实现较高的内河船舶检测准确度。试验结果表明,不同天气状况下的识别算法的... 建立基于图像识别系统的水面无人船(USV)感知平台,采集内河船舶图片数据库建立船只单次多重检测(SSD)深度学习框架,通过使用预训练模型参数调优并微调分类框架实现较高的内河船舶检测准确度。试验结果表明,不同天气状况下的识别算法的查全率和查准率均能保持在70%以上。 展开更多
关键词 深度学习 水面无人船 图像识别 单次多重检测器
原文传递
基于改进SSD的合成孔径声呐图像水下多尺度目标轻量化检测模型 被引量:14
18
作者 李宝奇 黄海宁 +2 位作者 刘纪元 刘正君 韦琳哲 《电子与信息学报》 EI CSCD 北大核心 2021年第10期2854-2862,共9页
针对轻量化目标检测模型SSD-MV2对合成孔径声呐(SAS)图像水下多尺度目标检测精度低的问题,该文提出一种新的卷积核模块-可扩张可选择模块(ESK),ESK具有通道可扩张、通道可选择和模型参数少的优点。与此同时,利用ESK模块重新设计了SSD的... 针对轻量化目标检测模型SSD-MV2对合成孔径声呐(SAS)图像水下多尺度目标检测精度低的问题,该文提出一种新的卷积核模块-可扩张可选择模块(ESK),ESK具有通道可扩张、通道可选择和模型参数少的优点。与此同时,利用ESK模块重新设计了SSD的基础网络和附加特征提取网络,记作SSD-MV2ESK,并为其选择了合理的扩张系数和多尺度系数。在合成孔径声呐图像水下多尺度目标检测数据集SST-DET上,SSD-MV2ESK在模型参数基本相等的条件下,检测精度比SSD-MV2提升4.71%。实验结果表明,SSD-MV2ESK适用于合成孔径声呐图像水下多尺度目标检测任务。 展开更多
关键词 合成孔径声呐 图像水下多尺度目标检测 ssd MobileNet V2 多通道可选择 深度可分离空洞卷积
下载PDF
基于SSD的粮仓害虫检测研究 被引量:14
19
作者 邓壮来 汪盼 +3 位作者 宋雪桦 王昌达 陈娟 吴立亚 《计算机工程与应用》 CSCD 北大核心 2020年第11期214-218,共5页
为了对粮仓害虫进行有效地检测,减少粮食损失,提出一种基于SSD的粮仓害虫检测方法。该方法利用多个尺度的卷积特征图来检测害虫。通过轻量化模型结构和优化损失函数来提高SSD的训练速度和检测效率。实验将6类高爆发的粮仓害虫图像进行... 为了对粮仓害虫进行有效地检测,减少粮食损失,提出一种基于SSD的粮仓害虫检测方法。该方法利用多个尺度的卷积特征图来检测害虫。通过轻量化模型结构和优化损失函数来提高SSD的训练速度和检测效率。实验将6类高爆发的粮仓害虫图像进行训练和测试,结果表明:该方法相比较于当前主流的目标检测方法在对粮仓害虫检测中具有更高的mAP。 展开更多
关键词 粮仓害虫 粮食损失 目标检测 ssd MAP
下载PDF
基于深度学习SSD目标检测算法的混凝土结构裂缝识别 被引量:14
20
作者 李想 熊进刚 《南昌大学学报(工科版)》 CAS 2021年第1期43-51,共9页
针对当前土木工程混凝土结构裂缝识别效率低、精度不高的现状,基于深度学习理论,提出了一种基于单步多框检测(SSD)的裂缝识别方法。利用labelimg插件制作了2种具有代表性的裂缝数据集BCD和CCIC的数据标签。然后利用大量典型的裂缝图片... 针对当前土木工程混凝土结构裂缝识别效率低、精度不高的现状,基于深度学习理论,提出了一种基于单步多框检测(SSD)的裂缝识别方法。利用labelimg插件制作了2种具有代表性的裂缝数据集BCD和CCIC的数据标签。然后利用大量典型的裂缝图片进行识别训练,比较模型在不同样本类型和数量下训练效果的差异。并通过取样验证、损失值可视化和mAP精度评价等方法,证明该裂缝识别系统精度能达到95%以上并具有一定的普适性。因此,该系统可以应用到实际的裂缝识别任务中,为混凝土裂缝识别提供更高效的途径。 展开更多
关键词 深度学习 单步多框检测 裂缝识别 混凝土结构
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部