This editorial explores the significant challenge of intensive care unit-acquiredweakness(ICU-AW),a prevalent condition affecting critically ill patients,characterizedby profound muscle weakness and complicating patie...This editorial explores the significant challenge of intensive care unit-acquiredweakness(ICU-AW),a prevalent condition affecting critically ill patients,characterizedby profound muscle weakness and complicating patient recovery.Highlightingthe paradox of modern medical advances,it emphasizes the urgent needfor early identification and intervention to mitigate ICU-AW's impact.Innovatively,the study by Wang et al is showcased for employing a multilayer perceptronneural network model,achieving high accuracy in predicting ICU-AWrisk.This advancement underscores the potential of neural network models inenhancing patient care but also calls for continued research to address limitationsand improve model applicability.The editorial advocates for the developmentand validation of sophisticated predictive tools,aiming for personalized carestrategies to reduce ICU-AW incidence and severity,ultimately improving patientoutcomes in critical care settings.展开更多
Electroencephalography(EEG)analysis extracts critical information from brain signals,enabling brain disease diagnosis and providing fundamental support for brain–computer interfaces.However,performing an artificial i...Electroencephalography(EEG)analysis extracts critical information from brain signals,enabling brain disease diagnosis and providing fundamental support for brain–computer interfaces.However,performing an artificial intelligence analysis of EEG signals with high energy efficiency poses significant challenges for electronic processors on edge computing devices,especially with large neural network models.Herein,we propose an EEG opto-processor based on diffractive photonic computing units(DPUs)to process extracranial and intracranial EEG signals effectively and to detect epileptic seizures.The signals of the EEG channels within a second-time window are optically encoded as inputs to the constructed diffractive neural networks for classification,which monitors the brain state to identify symptoms of an epileptic seizure.We developed both free-space and integrated DPUs as edge computing systems and demonstrated their applications for real-time epileptic seizure detection using benchmark datasets,that is,the Children’s Hospital Boston(CHB)–Massachusetts Institute of Technology(MIT)extracranial and Epilepsy-iEEG-Multicenter intracranial EEG datasets,with excellent computing performance results.Along with the channel selection mechanism,both numerical evaluations and experimental results validated the sufficiently high classification accuracies of the proposed opto-processors for supervising clinical diagnosis.Our study opens a new research direction for utilizing photonic computing techniques to process large-scale EEG signals and promote broader applications.展开更多
文摘This editorial explores the significant challenge of intensive care unit-acquiredweakness(ICU-AW),a prevalent condition affecting critically ill patients,characterizedby profound muscle weakness and complicating patient recovery.Highlightingthe paradox of modern medical advances,it emphasizes the urgent needfor early identification and intervention to mitigate ICU-AW's impact.Innovatively,the study by Wang et al is showcased for employing a multilayer perceptronneural network model,achieving high accuracy in predicting ICU-AWrisk.This advancement underscores the potential of neural network models inenhancing patient care but also calls for continued research to address limitationsand improve model applicability.The editorial advocates for the developmentand validation of sophisticated predictive tools,aiming for personalized carestrategies to reduce ICU-AW incidence and severity,ultimately improving patientoutcomes in critical care settings.
基金supported by the National Major Science and Technology Projects of China(2021ZD0109902 and 2020AA0105500)the National Natural Science Fundation of China(62275139 and 62088102)the Tsinghua University Initiative Scientific Research Program.
文摘Electroencephalography(EEG)analysis extracts critical information from brain signals,enabling brain disease diagnosis and providing fundamental support for brain–computer interfaces.However,performing an artificial intelligence analysis of EEG signals with high energy efficiency poses significant challenges for electronic processors on edge computing devices,especially with large neural network models.Herein,we propose an EEG opto-processor based on diffractive photonic computing units(DPUs)to process extracranial and intracranial EEG signals effectively and to detect epileptic seizures.The signals of the EEG channels within a second-time window are optically encoded as inputs to the constructed diffractive neural networks for classification,which monitors the brain state to identify symptoms of an epileptic seizure.We developed both free-space and integrated DPUs as edge computing systems and demonstrated their applications for real-time epileptic seizure detection using benchmark datasets,that is,the Children’s Hospital Boston(CHB)–Massachusetts Institute of Technology(MIT)extracranial and Epilepsy-iEEG-Multicenter intracranial EEG datasets,with excellent computing performance results.Along with the channel selection mechanism,both numerical evaluations and experimental results validated the sufficiently high classification accuracies of the proposed opto-processors for supervising clinical diagnosis.Our study opens a new research direction for utilizing photonic computing techniques to process large-scale EEG signals and promote broader applications.