Massive multiple-input multiple-output provides improved energy efficiency and spectral efficiency in 5 G. However it requires large-scale matrix computation with tremendous complexity, especially for data detection a...Massive multiple-input multiple-output provides improved energy efficiency and spectral efficiency in 5 G. However it requires large-scale matrix computation with tremendous complexity, especially for data detection and precoding. Recently, many detection and precoding methods were proposed using approximate iteration methods, which meet the demand of precision with low complexity. In this paper, we compare these approximate iteration methods in precision and complexity, and then improve these methods with iteration refinement at the cost of little complexity and no extra hardware resource. By derivation, our proposal is a combination of three approximate iteration methods in essence and provides remarkable precision improvement on desired vectors. The results show that our proposal provides 27%-83% normalized mean-squared error improvement of the detection symbol vector and precoding symbol vector. Moreover, we find the bit-error rate is mainly controlled by soft-input soft-output Viterbi decoding when using approximate iteration methods. Further, only considering the effect on soft-input soft-output Viterbi decoding, the simulation results show that using a rough estimation for the filter matrix of minimum mean square error detection to calculating log-likelihood ratio could provideenough good bit-error rate performance, especially when the ratio of base station antennas number and the users number is not too large.展开更多
Wavelet forced de-noising algorithm is suitable for denoising of unsteady drilling fluid pulse signal, including baseline drift rectification and two-stage de-noising processing of frame synchronization signal and ins...Wavelet forced de-noising algorithm is suitable for denoising of unsteady drilling fluid pulse signal, including baseline drift rectification and two-stage de-noising processing of frame synchronization signal and instruction signal. Two-stage de-noising processing can reduce the impact of baseline drift and determine automatic peak detection threshold range for signal recognition by distinguishing different features of frame synchronization pulse and instruction pulse. Rising and falling edge relative protruding threshold is defined for peak detection in signal recognition, which can make full use of the degree of the signal peak change and detect peaks flexibly with rising and falling edge relative protruding threshold combination. A synchronous decoding method was designed to reduce position uncertainty of the frame synchronization pulse and eliminate the accumulative error of time base drift, which determines the first instruction pulse position according to position of the frame synchronization pulse and decodes subsequent instruction pulse by taking current instruction pulse as new bit synchronization pulse. Special tool software was developed to tune algorithm parameters, which has a decoding success rate of about 95% for the universal coded signals. For the special coded signals with check byte, decoding success rate using the automatic threshold adjustment algorithm is as high as 99%.展开更多
Overlapped X domain multiplexing(Ov XDM) is a promising encoding technique to obtain high spectral efficiency by utilizing Inter-Symbol Interference(ISI). However, the computational complexity of Maximum Likelihood Se...Overlapped X domain multiplexing(Ov XDM) is a promising encoding technique to obtain high spectral efficiency by utilizing Inter-Symbol Interference(ISI). However, the computational complexity of Maximum Likelihood Sequence Detection(MLSD) increases exponentially with the growth of spectral efficiency in Ov XDM, which is unbearable for practical implementations. This paper proposes an Ov TDM decoding method based on Recurrent Neural Network(RNN) to realize fast decoding of Ov TDM system, which has lower decoding complexity than the traditional fast decoding method. The paper derives the mathematical model of the Ov TDM decoder based on RNN and constructs the decoder model. And we compare the performance of the proposed decoding method with the MLSD algorithm and the Fano algorithm. It’s verified that the proposed decoding method exhibits a higher performance than the traditional fast decoding algorithm, especially for the scenarios of a high overlapped multiplexing coefficient.展开更多
A new method for error detection using mode information of macroblocks (MBs) is proposed. For decodable inter MBs, inter residues are calculated by adding up absolute values of received residual pixels and intra com...A new method for error detection using mode information of macroblocks (MBs) is proposed. For decodable inter MBs, inter residues are calculated by adding up absolute values of received residual pixels and intra complexities are estimated by that of motion compensated reference blocks. If inter residues are larger than intra complexities by a predefined quantity, MBs are considered to be erroneous. For decodable intra MBs, the connective smoothness of the current MB with correctly decoded neighboring MBs is tested to find erroneous MBs. Combined with error concealment, the new method improves the quality of reconstructed images by about 0.5-1 dB in peak signal-noise ratio (PSNR).展开更多
文摘Massive multiple-input multiple-output provides improved energy efficiency and spectral efficiency in 5 G. However it requires large-scale matrix computation with tremendous complexity, especially for data detection and precoding. Recently, many detection and precoding methods were proposed using approximate iteration methods, which meet the demand of precision with low complexity. In this paper, we compare these approximate iteration methods in precision and complexity, and then improve these methods with iteration refinement at the cost of little complexity and no extra hardware resource. By derivation, our proposal is a combination of three approximate iteration methods in essence and provides remarkable precision improvement on desired vectors. The results show that our proposal provides 27%-83% normalized mean-squared error improvement of the detection symbol vector and precoding symbol vector. Moreover, we find the bit-error rate is mainly controlled by soft-input soft-output Viterbi decoding when using approximate iteration methods. Further, only considering the effect on soft-input soft-output Viterbi decoding, the simulation results show that using a rough estimation for the filter matrix of minimum mean square error detection to calculating log-likelihood ratio could provideenough good bit-error rate performance, especially when the ratio of base station antennas number and the users number is not too large.
基金Supported by the China National Science and Technology Major Project(2016ZX05020005-001)
文摘Wavelet forced de-noising algorithm is suitable for denoising of unsteady drilling fluid pulse signal, including baseline drift rectification and two-stage de-noising processing of frame synchronization signal and instruction signal. Two-stage de-noising processing can reduce the impact of baseline drift and determine automatic peak detection threshold range for signal recognition by distinguishing different features of frame synchronization pulse and instruction pulse. Rising and falling edge relative protruding threshold is defined for peak detection in signal recognition, which can make full use of the degree of the signal peak change and detect peaks flexibly with rising and falling edge relative protruding threshold combination. A synchronous decoding method was designed to reduce position uncertainty of the frame synchronization pulse and eliminate the accumulative error of time base drift, which determines the first instruction pulse position according to position of the frame synchronization pulse and decodes subsequent instruction pulse by taking current instruction pulse as new bit synchronization pulse. Special tool software was developed to tune algorithm parameters, which has a decoding success rate of about 95% for the universal coded signals. For the special coded signals with check byte, decoding success rate using the automatic threshold adjustment algorithm is as high as 99%.
基金supported by the National Natural Science Foundation of China under Grant No.61871049.
文摘Overlapped X domain multiplexing(Ov XDM) is a promising encoding technique to obtain high spectral efficiency by utilizing Inter-Symbol Interference(ISI). However, the computational complexity of Maximum Likelihood Sequence Detection(MLSD) increases exponentially with the growth of spectral efficiency in Ov XDM, which is unbearable for practical implementations. This paper proposes an Ov TDM decoding method based on Recurrent Neural Network(RNN) to realize fast decoding of Ov TDM system, which has lower decoding complexity than the traditional fast decoding method. The paper derives the mathematical model of the Ov TDM decoder based on RNN and constructs the decoder model. And we compare the performance of the proposed decoding method with the MLSD algorithm and the Fano algorithm. It’s verified that the proposed decoding method exhibits a higher performance than the traditional fast decoding algorithm, especially for the scenarios of a high overlapped multiplexing coefficient.
基金This work was supported by the National Natural Sci-ence Foundation of China (No. 60372043, 60272050).
文摘A new method for error detection using mode information of macroblocks (MBs) is proposed. For decodable inter MBs, inter residues are calculated by adding up absolute values of received residual pixels and intra complexities are estimated by that of motion compensated reference blocks. If inter residues are larger than intra complexities by a predefined quantity, MBs are considered to be erroneous. For decodable intra MBs, the connective smoothness of the current MB with correctly decoded neighboring MBs is tested to find erroneous MBs. Combined with error concealment, the new method improves the quality of reconstructed images by about 0.5-1 dB in peak signal-noise ratio (PSNR).