Recent years have witnessed the emergence of image decomposition techniques which effectively separate an image into a piecewise smooth base layer and several residual detail layers. However, the intricacy of detail p...Recent years have witnessed the emergence of image decomposition techniques which effectively separate an image into a piecewise smooth base layer and several residual detail layers. However, the intricacy of detail patterns in some cases may result in side-effects including remnant textures, wronglysmoothed edges, and distorted appearance. We introduce a new way to construct an edge-preserving image decomposition with properties of detail smoothing, edge retention, and shape fitting. Our method has three main steps: suppressing highcontrast details via a windowed variation similarity measure, detecting salient edges to produce an edgeguided image, and fitting the original shape using a weighted least squares framework. Experimental results indicate that the proposed approach can appropriately smooth non-edge regions even when textures and structures are similar in scale. The effectiveness of our approach is demonstrated in the contexts of detail manipulation, HDR tone mapping,and image abstraction.展开更多
The aim of this study is to compare the Discrete wavelet decomposition and the modified Principal Analysis Component (PCA) decomposition to analyze the stabilogram for the purpose to provide a new insight about human ...The aim of this study is to compare the Discrete wavelet decomposition and the modified Principal Analysis Component (PCA) decomposition to analyze the stabilogram for the purpose to provide a new insight about human postural stability. Discrete wavelet analysis is used to decompose the stabilogram into several timescale components (i.e. detail wavelet coefficients and approximation wavelet coefficients). Whereas, the modified PCA decomposition is applied to decompose the stabilogram into three components, namely: trend, rambling and trembling. Based on the modified PCA analysis, the trace of analytic trembling and rambling in the complex plan highlights a unique rotation center. The same property is found when considering the detail wavelet coefficients. Based on this property, the area of the circle in which 95% of the trace’s data points are located, is extracted to provide important information about the postural equilibrium status of healthy subjects (average age 31 ± 11 years). Based on experimental results, this parameter seems to be a valuable parameter in order to highlight the effect of visual entries, stabilogram direction, gender and age on the postural stability. Obtained results show also that wavelets and the modified PCA decomposition can discriminate the subjects by gender which is particularly interesting in biometric applications and human stability simulation. Moreover, both techniques highlight the fact that male are less stable than female and the fact that there is no correlation between human stability and his age (under 60).展开更多
基金sponsored by the National Basic Research Program of China (No. 2011CB302203)the National Natural Science Foundation of China (Nos. 61133009 and 61472245)the Science and Technology Commission of Shanghai Municipality Program (No. 13511505000)
文摘Recent years have witnessed the emergence of image decomposition techniques which effectively separate an image into a piecewise smooth base layer and several residual detail layers. However, the intricacy of detail patterns in some cases may result in side-effects including remnant textures, wronglysmoothed edges, and distorted appearance. We introduce a new way to construct an edge-preserving image decomposition with properties of detail smoothing, edge retention, and shape fitting. Our method has three main steps: suppressing highcontrast details via a windowed variation similarity measure, detecting salient edges to produce an edgeguided image, and fitting the original shape using a weighted least squares framework. Experimental results indicate that the proposed approach can appropriately smooth non-edge regions even when textures and structures are similar in scale. The effectiveness of our approach is demonstrated in the contexts of detail manipulation, HDR tone mapping,and image abstraction.
文摘The aim of this study is to compare the Discrete wavelet decomposition and the modified Principal Analysis Component (PCA) decomposition to analyze the stabilogram for the purpose to provide a new insight about human postural stability. Discrete wavelet analysis is used to decompose the stabilogram into several timescale components (i.e. detail wavelet coefficients and approximation wavelet coefficients). Whereas, the modified PCA decomposition is applied to decompose the stabilogram into three components, namely: trend, rambling and trembling. Based on the modified PCA analysis, the trace of analytic trembling and rambling in the complex plan highlights a unique rotation center. The same property is found when considering the detail wavelet coefficients. Based on this property, the area of the circle in which 95% of the trace’s data points are located, is extracted to provide important information about the postural equilibrium status of healthy subjects (average age 31 ± 11 years). Based on experimental results, this parameter seems to be a valuable parameter in order to highlight the effect of visual entries, stabilogram direction, gender and age on the postural stability. Obtained results show also that wavelets and the modified PCA decomposition can discriminate the subjects by gender which is particularly interesting in biometric applications and human stability simulation. Moreover, both techniques highlight the fact that male are less stable than female and the fact that there is no correlation between human stability and his age (under 60).