期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于并行附加特征提取网络的SSD地面小目标检测模型 被引量:16
1
作者 李宝奇 贺昱曜 +1 位作者 强伟 何灵蛟 《电子学报》 EI CAS CSCD 北大核心 2020年第1期84-91,共8页
针对SSD原始附加特征提取网络(Original Additional Feature Extraction Network,OAFEN)中stride操作造成图像小目标信息丢失和串联结构产生的多尺度特征之间冗余度较大的问题,提出了一种计算量小、感受野大的深度可分离空洞卷积(Depthw... 针对SSD原始附加特征提取网络(Original Additional Feature Extraction Network,OAFEN)中stride操作造成图像小目标信息丢失和串联结构产生的多尺度特征之间冗余度较大的问题,提出了一种计算量小、感受野大的深度可分离空洞卷积(Depthwise Separable Dilated Convolution,DSDC),并利用DSDC设计了一个包含三个独立子网络的并行附加特征提取网络(Parallel Additional Feature Extraction Network,PAFEN).PAFEN上路用两个DSDC提取尺寸为19*19和3*3的特征图;中路用一个DSDC提取尺寸为10*10的特征图;下路用两个DSDC提取尺寸为5*5和1*1的特征图.实验结果表明,在SSD框架内,PAFEN在mAP和检测时间等方面均优于OAFEN,适用于地面小目标的检测任务. 展开更多
关键词 目标检测 SSD 深度可分离卷积 空洞卷积 深度可分离空洞卷积 并行附加特征提取网络
下载PDF
基于改进SSD的合成孔径声呐图像水下多尺度目标轻量化检测模型 被引量:14
2
作者 李宝奇 黄海宁 +2 位作者 刘纪元 刘正君 韦琳哲 《电子与信息学报》 EI CSCD 北大核心 2021年第10期2854-2862,共9页
针对轻量化目标检测模型SSD-MV2对合成孔径声呐(SAS)图像水下多尺度目标检测精度低的问题,该文提出一种新的卷积核模块-可扩张可选择模块(ESK),ESK具有通道可扩张、通道可选择和模型参数少的优点。与此同时,利用ESK模块重新设计了SSD的... 针对轻量化目标检测模型SSD-MV2对合成孔径声呐(SAS)图像水下多尺度目标检测精度低的问题,该文提出一种新的卷积核模块-可扩张可选择模块(ESK),ESK具有通道可扩张、通道可选择和模型参数少的优点。与此同时,利用ESK模块重新设计了SSD的基础网络和附加特征提取网络,记作SSD-MV2ESK,并为其选择了合理的扩张系数和多尺度系数。在合成孔径声呐图像水下多尺度目标检测数据集SST-DET上,SSD-MV2ESK在模型参数基本相等的条件下,检测精度比SSD-MV2提升4.71%。实验结果表明,SSD-MV2ESK适用于合成孔径声呐图像水下多尺度目标检测任务。 展开更多
关键词 合成孔径声呐 图像水下多尺度目标检测 SSD MobileNet V2 多通道可选择 深度可分离空洞卷积
下载PDF
基于改进ResNet50的钨矿石双能X射线图像分选方法
3
作者 刘志锋 曾灵锋 +2 位作者 彭芳伟 魏振华 张寰宇 《现代电子技术》 北大核心 2024年第13期87-92,共6页
文中提出一种基于深度扩张可分离卷积和注意力机制的残差网络模型(DWAtt-ResNet),通过实验对比表明,该模型在钨矿石双能X射线图像数据集上准确率、F1分数、AUC值和AP值均优于ConvNeXt、DenseNet121和EfficientNet_b4等主流的图像分类模... 文中提出一种基于深度扩张可分离卷积和注意力机制的残差网络模型(DWAtt-ResNet),通过实验对比表明,该模型在钨矿石双能X射线图像数据集上准确率、F1分数、AUC值和AP值均优于ConvNeXt、DenseNet121和EfficientNet_b4等主流的图像分类模型。通过消融实验表明,该模型准确率达到87.4%,计算量为2.7GFLOPs,参数量为16.95M,相比ResNet50准确率提高3%,计算量降低1.42 GFLOPs,参数量降低6.56M,准确率提升的同时,效率大幅提升,更适合工业生产的矿石快速分拣需求。 展开更多
关键词 钨矿石 双能X射线 图像分类 ResNet50 深度扩张可分离卷积 注意力机制
下载PDF
基于改进的DeepLabv3+图像语义分割算法研究
4
作者 赵为平 陈雨 +2 位作者 项松 刘远强 王超越 《系统仿真学报》 CAS CSCD 北大核心 2023年第11期2333-2344,共12页
目前主流图像语义分割网络往往存在误分割、分割不连续和模型复杂度高的问题,不能灵活高效地部署于实际场景中。针对这一现象,通过综合考虑网络的参数量、预测时间和准确度,设计出一种优化DeepLabv3+模型的图像语义分割网络。骨干网络... 目前主流图像语义分割网络往往存在误分割、分割不连续和模型复杂度高的问题,不能灵活高效地部署于实际场景中。针对这一现象,通过综合考虑网络的参数量、预测时间和准确度,设计出一种优化DeepLabv3+模型的图像语义分割网络。骨干网络改用轻量级EfficientNetv2网络提取特征,提高参数利用率;在空洞空间金字塔池化模块中使用混合条带池化模块代替全局平均池化,引入深度可分离膨胀卷积,减少参数量和提高学习多尺度信息的能力;使用注意力机制增强模型表征力,提取骨干网络多条浅层特征,丰富图像的几何细节信息。实验表明,本文算法可达到mIoU为81.19%,参数量为55.51×106,有效优化了分割精度和模型复杂度,同时也提高了模型泛化性。 展开更多
关键词 DeepLabv3+ 图像语义分割 空洞空间金字塔池化 注意力机制 深度可分离膨胀卷积
下载PDF
多尺度特征金字塔融合的街景图像语义分割
5
作者 曲海成 王莹 +1 位作者 董康龙 刘万军 《计算机系统应用》 2024年第3期73-84,共12页
针对街景图像语义分割任务中的目标尺寸差异大、多尺度特征难以高效提取的问题,本文提出了一种语义分割网络(LDPANet).首先,将空洞卷积与引入残差学习单元的深度可分离卷积结合,来优化编码器结构,在降低了计算复杂度的同时缓解梯度消失... 针对街景图像语义分割任务中的目标尺寸差异大、多尺度特征难以高效提取的问题,本文提出了一种语义分割网络(LDPANet).首先,将空洞卷积与引入残差学习单元的深度可分离卷积结合,来优化编码器结构,在降低了计算复杂度的同时缓解梯度消失的问题.然后利用层传递的迭代空洞空间金字塔,将自顶向下的特征信息依次融合,提高了上下文信息的有效交互能力;在多尺度特征融合之后引入属性注意力模块,使网络抑制冗余信息,强化重要特征.再者,以通道扩展上采样代替双线插值上采样作为解码器,进一步提升了特征图的分辨率.最后,LDPANet方法在Cityscapes和CamVid数据集上的精度分别达到了91.8%和87.52%,与近几年网络模型相比,本文网络模型可以精确地提取像素的位置信息以及空间维度信息,提高了语义分割的准确率. 展开更多
关键词 语义分割 MDSDC IDCP-LC 属性注意力 通道扩展上采样 特征融合
下载PDF
DeepLabV3_DHC:城市无人机遥感图像语义分割 被引量:1
6
作者 孙国文 罗小波 张坤强 《激光与光电子学进展》 CSCD 北大核心 2024年第4期384-393,共10页
高分辨率无人机遥感图像具有极为丰富的语义和地物特征,在语义分割中容易出现目标分割不全、边缘信息缺失、分割精度不足等问题。为了解决上述问题,基于DeepLabV3_plus模型提出改进的DeepLabV3_DHC。首先,利用多种主干网络进行下采样,... 高分辨率无人机遥感图像具有极为丰富的语义和地物特征,在语义分割中容易出现目标分割不全、边缘信息缺失、分割精度不足等问题。为了解决上述问题,基于DeepLabV3_plus模型提出改进的DeepLabV3_DHC。首先,利用多种主干网络进行下采样,采集图像的低级特征和高级特征。其次,将原模型的atrous spatial pyramid pooling(ASPP)全部替换成深度可分离混合空洞卷积,同时添加自适应系数,减弱网格效应。之后,抛弃传统上采样的双线性插值法,替换为可学习的密集上采样卷积。最后,在低级特征中串联注意机制。选用多种主干网络进行实验,数据集选用四川省隆昌市地区的部分图像,采用平均交并比和类别平均像素准确率作为评价指标。实验结果表明:所提方法不仅具有较高的分割精度,而且减少了计算量和参数量。 展开更多
关键词 城市无人机遥感图像 语义分割 深度可分离混合空洞卷积 密集上采样 注意力机制 网格效应
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部