为使苹果采摘机器人在复杂果树背景下能快速准确地检测出苹果,提出一种轻量化YOLO(You only look once)卷积神经网络(Light-YOLOv3)模型与苹果检测方法。首先,对传统YOLOv3深度卷积神经网络架构进行改进,设计一种同构残差块串联的特征...为使苹果采摘机器人在复杂果树背景下能快速准确地检测出苹果,提出一种轻量化YOLO(You only look once)卷积神经网络(Light-YOLOv3)模型与苹果检测方法。首先,对传统YOLOv3深度卷积神经网络架构进行改进,设计一种同构残差块串联的特征提取网络结构,简化目标检测的特征图尺度,采用深度可分离卷积替换普通卷积,提出一种融合均方误差损失和交叉熵损失的多目标损失函数;其次,开发爬虫程序,从互联网上获取训练数据并进行标注,采用数据增强技术对训练数据进行扩充,并对数据进行归一化,针对Light-YOLOv3网络训练,提出一种基于随机梯度下降(Stochastic gradient descent,SGD)和自适应矩估计(Adaptive moment estimation,Adam)的多阶段学习优化技术;最后,分别在计算机工作站和嵌入式开发板上进行了复杂果树背景下的苹果检测实验。结果表明,基于轻量化YOLOv3网络的苹果检测方法在检测速度和准确率方面均有显著的提高,在工作站和嵌入式开发板上的检测速度分别为116.96、7.59 f/s,F1值为94.57%,平均精度均值(Mean average precision,mAP)为94.69%。展开更多
针对船舶目标检测存在的模型参数量多、规模大、实时性差和难以在实际工程中应用等问题,提出面向船舶目标检测的YOLOX轻量化方法。设计CA-Mobile Net V3轻量化主干网络,在Mobile Net V3中融合坐标注意力机制,生成一对方向感知特征图,提...针对船舶目标检测存在的模型参数量多、规模大、实时性差和难以在实际工程中应用等问题,提出面向船舶目标检测的YOLOX轻量化方法。设计CA-Mobile Net V3轻量化主干网络,在Mobile Net V3中融合坐标注意力机制,生成一对方向感知特征图,提升空间信息编码能力;改进细化融合特征金字塔网络,构建对称的大尺度深度可分离卷积,提高感受野的范围;通过引入残差分支,以串联的方式融合细化不同尺度的特征信息,提高对小尺度船舶目标的检测能力。基于Seaships数据集的试验结果表明,提出的模型与YOLOv5和YOLOX等相比,具有规模小、实时性好和检测精度高等优势。展开更多
随着手机传感器的普遍使用,对人体日常行为动作识别需求越来越多,经典识别方法是利用启发式过程获得人工特征,再用机器学习方法识别动作。最新研究表明,Inception卷积结构在特征自动提取方面表现尤为突出,可避免人工提取特征带来的偏差...随着手机传感器的普遍使用,对人体日常行为动作识别需求越来越多,经典识别方法是利用启发式过程获得人工特征,再用机器学习方法识别动作。最新研究表明,Inception卷积结构在特征自动提取方面表现尤为突出,可避免人工提取特征带来的偏差问题。人体动作由复杂运动序列构成,捕捉该时间序列是动作识别必不可少的。基于此,首先对Inception结构进行了优化,提出了O-Inception结构,并将其与长短期记忆模型(long short term memory,LSTM)进行了融合,进而提出了OI-LSTM(optimization Inception-LSTM)动作识别模型。OI-LSTM模型一方面可以利用O-Inception结构实现对特征的自动提取,另一方面,还可以利用LSTM捕获动作时序,进而提高了动作识别准确率。在WISDM(wireless sensor data mining)和UCI(UC Irvine)两个数据集上进行了扩展性实验,实验结果表明,所提出的OI-LSTM动作识别模型,在WISDM和UCI两个数据集上其准确率比当前最先进的方法分别提高了约4%和1%。实验还证明,此模型拥有很强的容错性和实时性。展开更多
文摘为使苹果采摘机器人在复杂果树背景下能快速准确地检测出苹果,提出一种轻量化YOLO(You only look once)卷积神经网络(Light-YOLOv3)模型与苹果检测方法。首先,对传统YOLOv3深度卷积神经网络架构进行改进,设计一种同构残差块串联的特征提取网络结构,简化目标检测的特征图尺度,采用深度可分离卷积替换普通卷积,提出一种融合均方误差损失和交叉熵损失的多目标损失函数;其次,开发爬虫程序,从互联网上获取训练数据并进行标注,采用数据增强技术对训练数据进行扩充,并对数据进行归一化,针对Light-YOLOv3网络训练,提出一种基于随机梯度下降(Stochastic gradient descent,SGD)和自适应矩估计(Adaptive moment estimation,Adam)的多阶段学习优化技术;最后,分别在计算机工作站和嵌入式开发板上进行了复杂果树背景下的苹果检测实验。结果表明,基于轻量化YOLOv3网络的苹果检测方法在检测速度和准确率方面均有显著的提高,在工作站和嵌入式开发板上的检测速度分别为116.96、7.59 f/s,F1值为94.57%,平均精度均值(Mean average precision,mAP)为94.69%。
文摘针对船舶实时性检测中出现的检测精度低、漏检问题,改进一种基于YOLOv3-Tiny的船舶目标检测算法。通过引入深度可分离卷积作为主干网络,提高通道数量,减少模型的参数量和运算量;采用H-Swish和Leaky ReLU激活函数改进卷积结构,提取更多特征信息;利用GIOU(Generalized Intersection Over Union)损失优化边界框,突显目标区域重合度,提高精度。在混合船舶数据集上检测结果表明,改进后YOLOv3-Tiny的检测精度为83.40%,较原算法提高5.33百分点,召回率和检测速度也均优于原算法,适用于船舶实时性检测。
文摘针对船舶目标检测存在的模型参数量多、规模大、实时性差和难以在实际工程中应用等问题,提出面向船舶目标检测的YOLOX轻量化方法。设计CA-Mobile Net V3轻量化主干网络,在Mobile Net V3中融合坐标注意力机制,生成一对方向感知特征图,提升空间信息编码能力;改进细化融合特征金字塔网络,构建对称的大尺度深度可分离卷积,提高感受野的范围;通过引入残差分支,以串联的方式融合细化不同尺度的特征信息,提高对小尺度船舶目标的检测能力。基于Seaships数据集的试验结果表明,提出的模型与YOLOv5和YOLOX等相比,具有规模小、实时性好和检测精度高等优势。
文摘随着手机传感器的普遍使用,对人体日常行为动作识别需求越来越多,经典识别方法是利用启发式过程获得人工特征,再用机器学习方法识别动作。最新研究表明,Inception卷积结构在特征自动提取方面表现尤为突出,可避免人工提取特征带来的偏差问题。人体动作由复杂运动序列构成,捕捉该时间序列是动作识别必不可少的。基于此,首先对Inception结构进行了优化,提出了O-Inception结构,并将其与长短期记忆模型(long short term memory,LSTM)进行了融合,进而提出了OI-LSTM(optimization Inception-LSTM)动作识别模型。OI-LSTM模型一方面可以利用O-Inception结构实现对特征的自动提取,另一方面,还可以利用LSTM捕获动作时序,进而提高了动作识别准确率。在WISDM(wireless sensor data mining)和UCI(UC Irvine)两个数据集上进行了扩展性实验,实验结果表明,所提出的OI-LSTM动作识别模型,在WISDM和UCI两个数据集上其准确率比当前最先进的方法分别提高了约4%和1%。实验还证明,此模型拥有很强的容错性和实时性。