Uranium exploration breakthrough was extremely rare in an aeolian depositional system.In order to know the complicate characteristics of oxidation associated closely with uranium mineralization in the aeolian depositi...Uranium exploration breakthrough was extremely rare in an aeolian depositional system.In order to know the complicate characteristics of oxidation associated closely with uranium mineralization in the aeolian depositional system,petrology and mineralogy markers of the oxidation and its genetic mechanisms are identified and illustrated by fieldwork,thin section analysis and scanning electron microscopy test,based on 2 field outcrops in Zhenyuan County in the southwest of the Tianhuan depression in the Ordos Basin and the core of 2 wells in the north and south of Ordos Basin.The results showed:the typical macroscopic indicator of primary oxidation was the red fine sediments in the aeolian interdune with a thickness of 10-50 cm,and the microscopic characteristics of primary oxidation were the minerals such as hematite,ilmenite,and the irony matrix rich in fine-grained dolomite and biotite;the phreatic oxidation was manifested as the red sandstone with limonite horizontal layer with a thickness of 1-4 cm and a width of 60 cm-1 m,and the circular limonite nodules with a diameter of 3-7 cm,in which there was intergranular limonite cement;the interlayer oxidation was characterized by lenticular tongue and tapered red sandstone with a length of 1-10 m and a width of 10 cm-5m,in which detrital particles are coated with hematite and hematite was distributed inside the rhombus dolomite.The paleoclimate of the sedimentary period,the water-table movement and the pore and permeability conditions of the sand body were the key factors for the formation of different oxidation types in the aeolian depositional system.展开更多
The structural styles can be used to analyses and predict developments and distributions of sand bodies in a rift basin. The dynamic process of faulting and sedimentation can be expressed as follow: the basin topograp...The structural styles can be used to analyses and predict developments and distributions of sand bodies in a rift basin. The dynamic process of faulting and sedimentation can be expressed as follow: the basin topography controlled by fault activity can control water dynamics; which in turn affect the transport and sedimentation of sediments. The corresponding analysis between structural styles and sand depositional types includes the following aspects: (1) in section, the corresponding between development of fault terraces and sand depositional types; (2) in plane, the relationship between faults' association and distributions of sand bodies. There are four types of terrace styles to be identified. They are Steep Slope Single Fault Terrace (SSSFT), Steep Slope Multiple Fault Terrace (SSMFT), Gentle Slope (GS) and Gentle Slope Multiple Fault Terrace (GSMFT), which also can be divided into six subtypes by the timing of the faults activities and the directions of their activity migrations (basinward and landward or marginward). They correspond to the following sand depositions such as alluvial fan, fan delta and turbidite fan etc.. The analysis of structure-sedimentation is a discussion on the rank Ⅲ sequence evolution under the condition of pulsing or episodic fault activities. It has been recognized four plane fault associations such as the comb, the broom, the fork and the fault-fold association as well as the corresponding sand distributions. Structural-sedimentary models above mentioned are significant for the deep oil and gas exploration when lacking of the drill data. It may reduce multiple resolutions in the interpretation of seismic-sedimentary facies and promote sand predictions through the constraints of the structural styles of the basin units. The structural-sedimentary pattern can be used as a geological model in oil and gas exploration in the rift basins.展开更多
基金supported by the National Key Research and Development Program of China (No.2018YFC0604202)from the Ministry of Science and Technology of China and the International Geosciences Program (No.IGCP675)
文摘Uranium exploration breakthrough was extremely rare in an aeolian depositional system.In order to know the complicate characteristics of oxidation associated closely with uranium mineralization in the aeolian depositional system,petrology and mineralogy markers of the oxidation and its genetic mechanisms are identified and illustrated by fieldwork,thin section analysis and scanning electron microscopy test,based on 2 field outcrops in Zhenyuan County in the southwest of the Tianhuan depression in the Ordos Basin and the core of 2 wells in the north and south of Ordos Basin.The results showed:the typical macroscopic indicator of primary oxidation was the red fine sediments in the aeolian interdune with a thickness of 10-50 cm,and the microscopic characteristics of primary oxidation were the minerals such as hematite,ilmenite,and the irony matrix rich in fine-grained dolomite and biotite;the phreatic oxidation was manifested as the red sandstone with limonite horizontal layer with a thickness of 1-4 cm and a width of 60 cm-1 m,and the circular limonite nodules with a diameter of 3-7 cm,in which there was intergranular limonite cement;the interlayer oxidation was characterized by lenticular tongue and tapered red sandstone with a length of 1-10 m and a width of 10 cm-5m,in which detrital particles are coated with hematite and hematite was distributed inside the rhombus dolomite.The paleoclimate of the sedimentary period,the water-table movement and the pore and permeability conditions of the sand body were the key factors for the formation of different oxidation types in the aeolian depositional system.
文摘The structural styles can be used to analyses and predict developments and distributions of sand bodies in a rift basin. The dynamic process of faulting and sedimentation can be expressed as follow: the basin topography controlled by fault activity can control water dynamics; which in turn affect the transport and sedimentation of sediments. The corresponding analysis between structural styles and sand depositional types includes the following aspects: (1) in section, the corresponding between development of fault terraces and sand depositional types; (2) in plane, the relationship between faults' association and distributions of sand bodies. There are four types of terrace styles to be identified. They are Steep Slope Single Fault Terrace (SSSFT), Steep Slope Multiple Fault Terrace (SSMFT), Gentle Slope (GS) and Gentle Slope Multiple Fault Terrace (GSMFT), which also can be divided into six subtypes by the timing of the faults activities and the directions of their activity migrations (basinward and landward or marginward). They correspond to the following sand depositions such as alluvial fan, fan delta and turbidite fan etc.. The analysis of structure-sedimentation is a discussion on the rank Ⅲ sequence evolution under the condition of pulsing or episodic fault activities. It has been recognized four plane fault associations such as the comb, the broom, the fork and the fault-fold association as well as the corresponding sand distributions. Structural-sedimentary models above mentioned are significant for the deep oil and gas exploration when lacking of the drill data. It may reduce multiple resolutions in the interpretation of seismic-sedimentary facies and promote sand predictions through the constraints of the structural styles of the basin units. The structural-sedimentary pattern can be used as a geological model in oil and gas exploration in the rift basins.