The cutting friction, cutting deformation, producing heat, conducting heat, temperature field of TiN coated HSS tools in the cutting process are discussed profoundly. In order to make clear the heat property of TiN co...The cutting friction, cutting deformation, producing heat, conducting heat, temperature field of TiN coated HSS tools in the cutting process are discussed profoundly. In order to make clear the heat property of TiN coated tools, from the micromechanism angle, the relationship of the heat property and the crystal structure of TiN compound is analyzed, and the regularity of TiN compound crystal structure changing with temperature rising is sought. The difference of the wear resistance and heat resistance of TiN coated tools deposited by c1 and c2 depositing techniques is proved by tests. The conclusions will offer the theoretical basis for correct design of geometrical parameters of TiN coated tools, rational selection of cutting regimes and optimization of the depositing technique.展开更多
文摘The cutting friction, cutting deformation, producing heat, conducting heat, temperature field of TiN coated HSS tools in the cutting process are discussed profoundly. In order to make clear the heat property of TiN coated tools, from the micromechanism angle, the relationship of the heat property and the crystal structure of TiN compound is analyzed, and the regularity of TiN compound crystal structure changing with temperature rising is sought. The difference of the wear resistance and heat resistance of TiN coated tools deposited by c1 and c2 depositing techniques is proved by tests. The conclusions will offer the theoretical basis for correct design of geometrical parameters of TiN coated tools, rational selection of cutting regimes and optimization of the depositing technique.