The combination of 5,5'-bistetrazole-1,1'-diolate(TKX-50) and ammonium perchlorate(AP) can make greater use of the chemical energy of TKX-50 based energetic materials.The research on the interaction mechanism ...The combination of 5,5'-bistetrazole-1,1'-diolate(TKX-50) and ammonium perchlorate(AP) can make greater use of the chemical energy of TKX-50 based energetic materials.The research on the interaction mechanism between TKX-50 and AP is very important for designing TKX-50-AP compounds and judging the formation feasibility of composite particles,which can lay a theoretical foundation for the preparation of TKX-50-AP mixed crystals and the application of TKX-50 in propellant,propellant and explosive.Herein,in order to research the interaction mechanism between TKX-50 and AP,density-functional theory calculation was applied to optimize three configurations of TKX-50-AP compounds.The geometry structure,electrostatic potential and binding energy of the compounds were predicted,and the electronic density topological analysis was also carried out.Then TKX-50-AP mixed crystals structures were constructed,and the radial distribution function of H-O and H-N in mixed crystals was calculated.Finally,solvent/non-solvent method was applied to prepare TKX-50-AP composites,and the infrared spectro scopy and the non-isothermal decomposition perfo rmance of the composites were characterized.Results show that the superposition of positive charges in TKX-50 molecule and negative charges in AP makes the electrostatic potential distributions of TKX-50-AP compounds different from that of TKX-50 and AP.The interaction energies of TKX-50-AP 1,TKX-50-AP 2 and TKX-50-AP 3 are 39.743 kJ/mol,61.206 kJ/mol and 27.702 kJ/mol,respectively.The interaction between TKX-50 molecules and AP molecules in TKX-50-AP mixed crystals both depends on hydrogen bonds and van der Waals force,and the number and strength of hydrogen bonds are significantly greater than that of van der Waals force.The composition of AP and TKX-50 makes the absorption peak of the five-membered rings and NH_3 OH^+ of TKX-50 shift to low wavenumber in the infrared spectroscopy.In general,TKX-50 interacts with AP via hydrogen bonds and van der Waals force,and the calculated results are展开更多
Two-dimensional(2D)carbon nitride(CN)photocatalysts are attracting extensive attention owing to their excellent photocatalytic properties.In this study,we successfully prepared CN materials with heterogeneous structur...Two-dimensional(2D)carbon nitride(CN)photocatalysts are attracting extensive attention owing to their excellent photocatalytic properties.In this study,we successfully prepared CN materials with heterogeneous structures via hydrothermal treatment,high-temperature roasting,ball milling,sintering,and other processes.Benefitting from interface interactions in hybrid architectures,the CN photocatalysts exhibited high photocatalytic activity.The rate of hydrogen production using these CN photocatalysts reached 17028.82μmol h^(−1)g^(−1),and the apparent quantum efficiency was 11.2%at 420 nm.The ns-level time-resolved photoluminescence(PL)spectra provided information about the time-averaged lifetime of fluorescence charge carriers;the lifetime of the charge carriers causing the fluorescence of CN reached 9.99 ns.Significantly,the CN photocatalysts displayed satisfactory results in overall water splitting without the addition of sacrificial agents.The average hydrogen and oxygen production rates were 270.95μmol h^(−1)g^(−1)and 115.21μmol h^(−1)g^(−1)in 7 h,respectively,which were promising results for the applications of the catalysts in overall water splitting processes.We investigated the high efficiency of the prepared CN photocatalysts via a series of tests(UV-vis diffuse reflectance spectroscopy,photocurrent response measurements,PL emission spectroscopy,time-resolved PL spectroscopy,and Brunauer-Emmett-Teller analysis).Furthermore,the Mott-Schottky plot and current-voltage curve were acquired via electrochemical tests.The fabricated CN photocatalyst had a small p-n junction in its heterogeneous structure,which further enhanced its photocatalytic efficiency.Therefore,this work can promote the development of CN photocatalysts.展开更多
MXene nanomaterials have attracted great interest as the electrode of supercapacitors.However,its energy storage mecha-nisms in organic electrolytes are still unclear.This work investigated the size effect of cations(...MXene nanomaterials have attracted great interest as the electrode of supercapacitors.However,its energy storage mecha-nisms in organic electrolytes are still unclear.This work investigated the size effect of cations(i.e.,Lit,Nat,K^(+),and EMIM^(+))on the capacitive behaviors of MXene-based supercapacitors.The experimental results demonstrate that the specific capacitance increases obviously with decreasing cation size(i.e.,from 43 F g^(-1)(EMIM^(+))to 129 F g^(-1)(Li^(+))at 2 mV s^(-1)).Density-functional theory calculation reveals a correlation between cation size and ion-electrode surface interaction,sup-porting experimental observations of the capacitive-dominant behavior.Molecular dynamics simulations reveal that the ionic solvation structure and desolvation degree of intercalated cations as a function of solvation size,providing dynamic insights into the experimentally observed specific capacitance trends.Our comprehensive experimental and computational study provides valuable insights into the intricate solvation effects governing the charge storage mechanisms.This finding of ion dynamics,solvation structure,and desolvation may contribute to guide the design and optimization of appropriate ions/electrolytes combinations for MXene-based supercapacitors.展开更多
Polymer density-functional theories(PDFTs)have distinct advantages in the study of polyelectrolyte(PE)systems over experiments and molecular simulations.Here we give an introductory review of some PDFTs recently devel...Polymer density-functional theories(PDFTs)have distinct advantages in the study of polyelectrolyte(PE)systems over experiments and molecular simulations.Here we give an introductory review of some PDFTs recently developed for PE systems.We start with a general formalism of PDFTs and its relation to the widely used polymer self-consistent field theory(SCFT),then explain the various correlations that are neglected in SCFT but can be accounted for in PDFTs,including those due to the excluded-volume interaction and chain connectivity of uncharged polymers,the electrostatic correlations of small ions,and the chain correlations in PEs.We also list some applications of PDFTs for PE systems,and finally give some perspectives on future work.We hope that our review can attract more researchers to apply and further develop PDFTs as a promising class of theoretical and computational tools.展开更多
Separation of ethane from ethylene is a very important but challenging process in the petrochemical industry.Finding an alternative method would reduce the energy needed to make 170 million tons of ethylene manufactur...Separation of ethane from ethylene is a very important but challenging process in the petrochemical industry.Finding an alternative method would reduce the energy needed to make 170 million tons of ethylene manufactured worldwide each year.Adsorptive separation using C2H6-selective porous materials to directly produce high-purity C2H4 is more energy-efficient.We herein report the"reversed C2H6/C2H4 adsorption"in a metal–organic framework Cr-BTC via the introduction of oxygen on its open metal sites.The oxidized Cr-BTC(O2)can bind C2H6 over C2H4 through the active Cr-superoxo sites,which was elucidated by the gas sorption isotherms and density functional theory calculations.This material thus exhibits a good performance for the separation of 50/50 C2H6/C2H4 mixtures to produce 99.99%pure C2H4 in a single separation operation.展开更多
A1N is used as high power LED package material because of its excellent thermal conductivity. But its poor adhesive with metal is not compatible with the later processing sequence. The properties of the bonding betwee...A1N is used as high power LED package material because of its excellent thermal conductivity. But its poor adhesive with metal is not compatible with the later processing sequence. The properties of the bonding between the deposited palladium, silver, copper and the clean Al-terminated (0001) surface of wurtzite AIN are investigated by using the density-functional the- ory. The results show that the sites of deposited metal atoms on N site are more stable than that on A1 site. Relaxations are found at all the studied interfaces. The bonding energies of Pd/A1N, Ag/A1N and Cu/A1N are respectively 2.75, 1.98, 2.26 eV. Hybridizations of s orbit and p orbit of the deposited metal atoms are observed, which contributes to the bonding energy of interface. The moving to lower energy state of the d orbit and the easier transfer of electrons to semi-empty d orbit in the case of deposited Pd results in the higher bonding energy of Pd/A1N interface.展开更多
According to the acceptance ratio method, the influences on the depletion interactions between a large sphere and a plate from another closely placed large sphere are studied by Monte Carlo simulation. The numerical r...According to the acceptance ratio method, the influences on the depletion interactions between a large sphere and a plate from another closely placed large sphere are studied by Monte Carlo simulation. The numerical results show that both the depletion potential and depletion force are affected by the presence of the closely placed large sphere; the closer the large sphere are placed to them, the larger the influence will be. Furthermore, the influences on the depletion interactions from another large sphere are more sensitive to the angle than to the distance.展开更多
The structural stability and the elastic properties of a novel structure of lead titanate, which is named pre- perovskite PbTiO3 (PP-PTO) and is constructed with TiO6 octahedral columns arranged in a one-dimensional...The structural stability and the elastic properties of a novel structure of lead titanate, which is named pre- perovskite PbTiO3 (PP-PTO) and is constructed with TiO6 octahedral columns arranged in a one-dimensional manner, are investigated by using first-principles calculations. PP-PTO is energetically unstable compared with conventional perovskite phases, however it is mechanically stable. The equilibrium transition pressures for changing from pre- perovskite to cubic and tetragonal phases are -0.5 GPa and -1.4 GPa, respectively, with first-order characteristics. Further, the differences in elastic properties between pre-perovskite and conventional perovskite phases are discussed for the covalent bonding network, which shows a highly anisotropic character in PP-PTO. This study provides a crucial insight into the structural stabilities of PP-PTO and conventional perovskite.展开更多
First-principles calculations of structural, electronic, optical, elastic, mechanical properties, and Born effective charges of monoclinic HfO2 are performed with the plane-wave pseudopotential technique based on the ...First-principles calculations of structural, electronic, optical, elastic, mechanical properties, and Born effective charges of monoclinic HfO2 are performed with the plane-wave pseudopotential technique based on the density-functional theory. The calculated structural properties are consistent with the previous theoretical and experimental results. The electronic structure reveals that monoclinic HfO2 has an indirect band gap. The analyses of density of states and Mulliken charges show mainly covalent nature in Hf-O bonds. Optical properties, including the dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function, and optical conductivity each as a function of photon energy are calculated and show an optical anisotropy. Moreover, the independent elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, compressibility, Lam6 constant, sound velocity, Debye temperature, and Born effective charges of monoclinic HfO2 are obtained, which may help to understand monoclinic HfO2 for future work.展开更多
First-principles calculations are performed to investigate the relaxation and electronic properties of sulfide minerals surfaces(MoS2, Sb2S3, Cu2 S, ZnS, PbS and FeS2) in presence of H2 O molecule. The calculated resu...First-principles calculations are performed to investigate the relaxation and electronic properties of sulfide minerals surfaces(MoS2, Sb2S3, Cu2 S, ZnS, PbS and FeS2) in presence of H2 O molecule. The calculated results show that the structure and electronic properties of sulfide minerals surfaces have been influenced in presence of H2 O molecule. The adsorption of the flotation reagent at the interface of mineral-water would be different from that of mineral surface due to the changes of surface structures and electronic properties caused by H2 O molecule. Hence, the influence of H2 O molecule on the reaction of flotation reagent with sulfide mineral surface will attract more attention.展开更多
First-principles calculation of muons in ionic fluorides has been proposed recently.However,there is a considerable difference between the obtained F-μbond length and the experimental data obtained by muon spin relax...First-principles calculation of muons in ionic fluorides has been proposed recently.However,there is a considerable difference between the obtained F-μbond length and the experimental data obtained by muon spin relaxation(μSR).Considering that the difference may be caused by ignoring the quantum effect of muons,we use two-component density functional theory(TCDFT)to consider the quantized muon and recalculate the bond length and theμSR depolarization spectrum.After testing several muon-electron correlation,we show that TCDFT can give better results than the commonly used“DFT+μ”.展开更多
Redox-active organic materials are emerging as the new playground for the design of new exciting battery materials for rechargeable batteries because of the merits including structural diversity and tunable electroche...Redox-active organic materials are emerging as the new playground for the design of new exciting battery materials for rechargeable batteries because of the merits including structural diversity and tunable electrochemical properties that are not easily accessible for the inorganic counterparts.More importantly,the sustainability developed by using naturally abundant chemical elements(C,H,N,O and S) makes them as an ideal alternative material for Li-ion batteries(LIBs).However,the identification and screening of proper organic materials is still challenging in the past decades.Assisted by the artificial intelligence,this review will give a summary of the theoretical design aspects of redox-active organic materials from densityfunctional theory(DFT) to machine learning(ML) methods in the past two decades,with a particular emphasis on the calculation method to predict the chemical/electrochemical stability and reversibility.This review will also analyze and discuss the challenges and perspectives for the development of organic battery materials.展开更多
Van der Waals semiconductor heterostructures(VSHs)composed of two or more two-dimensional(2D)materials with different band gaps exhibit huge potential for exploiting high-performance multifunctional devices.The applic...Van der Waals semiconductor heterostructures(VSHs)composed of two or more two-dimensional(2D)materials with different band gaps exhibit huge potential for exploiting high-performance multifunctional devices.The application of 2D VSHs in atomically thin devices highly depends on the control of their carrier type and density.Herein,on the basis of comprehensive first-principles calculations,we report a new strategy to manipulate the doping polarity and carrier density in a class of 2D VSHs consisting of atomically thin transition metal dichalcogenides(TMDs)andα-In_(2)X_(3)(X=S,Se)ferroelectrics via switchable polarization field.Our calculated results indicate that the band bending of In_(2)X_(3)layer driven by the FE polarization can be utilized for engineering the band alignment and doping polarity of TMD/In_(2)X_(3)VSHs,which enables us to control their carrier density and type of the VSHs by the orientation and magnitude of local FE polarization field.Inspired by these findings,we demonstrate that doping-free p–n junctions achieved in MoTe2/In2Se3 VSHs exhibit high carrier density(1013–1014 cm–2),and the inversion of the VHSs from n–p junctions to p–i–n junctions has been realized by the polarization switching from upward to downward states.This work provides a nonvolatile and nondestructive doping strategy for obtaining programmable p–n van der Waals(vdW)junctions and opens the possibilities for self-powered and multifunctional device applications.展开更多
We investigate the electronic structure ofβ-uranium,which has five nonequivalent atomic sites in its unit cell,by means of the density functional theory plus Hubbard-U correction with U from linear response calculati...We investigate the electronic structure ofβ-uranium,which has five nonequivalent atomic sites in its unit cell,by means of the density functional theory plus Hubbard-U correction with U from linear response calculation.It is found that the 5f electronic correlations inβ-uranium are moderate.More interestingly,their strengths are site selective,depending on the local atomic environment of the present uranium atom.As a consequence,the occupation matrices and partial 5f density of states ofβ-uranium manifest site dependence.In addition,the complicate experimental structure ofβ-uranium could be well reproduced within this theoretical framework.展开更多
In Quantum Information Theory(QIT) the classical measures of information content in probability distributions are replaced by the corresponding resultant entropic descriptors containing the nonclassical terms generate...In Quantum Information Theory(QIT) the classical measures of information content in probability distributions are replaced by the corresponding resultant entropic descriptors containing the nonclassical terms generated by the state phase or its gradient(electronic current). The classical Shannon(S[p]) and Fisher(I[p]) information terms probe the entropic content of incoherent local events of the particle localization, embodied in the probability distribution p, while their nonclassical phase-companions, S[ Φ ] and I[ Φ ], provide relevant coherence information supplements.Thermodynamic-like couplings between the entropic and energetic descriptors of molecular states are shown to be precluded by the principles of quantum mechanics. The maximum of resultant entropy determines the phase-equilibrium state, defined by "thermodynamic" phase related to electronic density,which can be used to describe reactants in hypothetical stages of a bimolecular chemical reaction.Information channels of molecular systems and their entropic bond indices are summarized, the complete-bridge propagations are examined, and sequential cascades involving the complete sets of the atomic-orbital intermediates are interpreted as Markov chains. The QIT description is applied to reactive systems R = A―B, composed of the Acidic(A) and Basic(B) reactants. The electronegativity equalization processes are investigated and implications of the concerted patterns of electronic flows in equilibrium states of the complementarily arranged substrates are investigated. Quantum communications between reactants are explored and the QIT descriptors of the A―B bond multiplicity/composition are extracted.展开更多
By using density-functional-theory based DMol3 code, the structure optimizations are performed on a short charged single-walled carbon nanotube. Results show that the total energy of the nanotube exhibits a parabolic ...By using density-functional-theory based DMol3 code, the structure optimizations are performed on a short charged single-walled carbon nanotube. Results show that the total energy of the nanotube exhibits a parabolic variation with respect to the amount of extra charge, and one negatively charged nanotube has the lowest total energy; thus the carbon nanotube has a positive electron affinity. When the charge is small, the variation of the atomic structure of the nanotube is also small, and neglecting the atomic structure variation leads to the qualitatively correct properties of the total energy and the energy of the highest occupied molecular orbital. When the extra charge is large, the end structure of the nanotube will be first affected and form into a trumpet shape. With the increasing of the extra charge, the nanotube end gradually becomes unstable, and this may lead to the ultimate destruction of the nanotube.展开更多
Nonradiative carrier recombinations at deep centers in semiconductors are of great importance for both fundamental physics and device engineering.In this article,we provide a revised analysis of Huang's original n...Nonradiative carrier recombinations at deep centers in semiconductors are of great importance for both fundamental physics and device engineering.In this article,we provide a revised analysis of Huang's original nonradiative multi-phonon(NMP)theory with ab initio calculations.First,we confirmed at the first-principles level that Huang's concise formula gives the same results as the matrix-based formula,and that Huang's high-temperature formula provides an analytical expression for the coupling constant in Marcus theory.Secondly,we correct for anharmonic effects by taking into account local phonon-mode variations for different charge states of a defect.The corrected capture rates for defects in GaN and SiC agree well with experiments.展开更多
Multifunctional catalysts that integrate high efficiency hydrogen evolution reaction(HER), oxygen evolution reaction(OER) and oxygen reduction reaction(ORR) catalytic activity in a single material are attractive for u...Multifunctional catalysts that integrate high efficiency hydrogen evolution reaction(HER), oxygen evolution reaction(OER) and oxygen reduction reaction(ORR) catalytic activity in a single material are attractive for unitized regenerative fuel cells and overall water splitting technologies. As the best-known HER and ORR electrocatalysts, Pt and its alloys have only moderate OER activity. Ruthenium and iridium oxides exhibit the highest OER activities but not as active as Pt for HER and ORR. Here, we proposed a general principle for achieving trifunctional electrocatalysis for three reactions in a single material. Using the newly-synthesized pyrazine-modified graphdiyne(PR-GDY) as an example, we demonstrated that the synergistic effect of the pyridinic nitrogen and anchored transition-metal(TM) single atoms renders highly-efficient HER/OER/ORR trifunctional electrocatalytic activity. For the Ni-doped PR-GDY, the overpotentials for HER, OER and ORR can be respectively as low as -0.05, 0.29 and 0.38 V, which are comparable or even superior to the best-known single-functional and bi-functional precious electrocatalysts.These computational results offer not only a promising trifunctional electrocatalyst but also a strategy for the design of multifunctional electrocatalysts.展开更多
Ammonia has been recognized as the future renewable energy fuel because of its wide-ranging applications in H_(2) storage and transportation sector.In order to avoid the environmentally hazardous Haber-Bosch process,r...Ammonia has been recognized as the future renewable energy fuel because of its wide-ranging applications in H_(2) storage and transportation sector.In order to avoid the environmentally hazardous Haber-Bosch process,recently,the third-generation ambient ammonia synthesis has drawn phenom-enal attention and thus tremendous efforts are devoted to developing efficient electrocatalysts that would circumvent the bottlenecks of the electrochemical nitrogen reduction reaction(NRR)like competitive hydrogen evolution reac-tion,poor selectivity of N_(2) on catalyst surface.Herein,we report the synthesis of an oxygen-functionalized boron carbonitride matrix via a two-step pyrolysis technique.The conductive BNCO(1000)architecture,the compatibility of B-2p_(z) orbital with the N-2p_(z) orbital and the charging effect over B due to the C and O edge-atoms in a pentagon altogether facilitate N_(2) adsorption on the B edge-active sites.The optimum electrolyte acidity with 0.1 M HCl and the lowered anion crowding effect aid the protonation steps of NRR via an associative alternating pathway,which gives a sufficiently high yield of ammonia(211.5μg h^(−1) mg_(cat)^(−1))on the optimized BNCO(1000)catalyst with a Faradaic efficiency of 34.7%at−0.1 V vs RHE.This work thus offers a cost-effective electrode material and provides a contemporary idea about reinforcing the charging effect over the secured active sites for NRR by selectively choosing the electrolyte anions and functionalizing the active edges of the BNCO(1000)catalyst.展开更多
文摘The combination of 5,5'-bistetrazole-1,1'-diolate(TKX-50) and ammonium perchlorate(AP) can make greater use of the chemical energy of TKX-50 based energetic materials.The research on the interaction mechanism between TKX-50 and AP is very important for designing TKX-50-AP compounds and judging the formation feasibility of composite particles,which can lay a theoretical foundation for the preparation of TKX-50-AP mixed crystals and the application of TKX-50 in propellant,propellant and explosive.Herein,in order to research the interaction mechanism between TKX-50 and AP,density-functional theory calculation was applied to optimize three configurations of TKX-50-AP compounds.The geometry structure,electrostatic potential and binding energy of the compounds were predicted,and the electronic density topological analysis was also carried out.Then TKX-50-AP mixed crystals structures were constructed,and the radial distribution function of H-O and H-N in mixed crystals was calculated.Finally,solvent/non-solvent method was applied to prepare TKX-50-AP composites,and the infrared spectro scopy and the non-isothermal decomposition perfo rmance of the composites were characterized.Results show that the superposition of positive charges in TKX-50 molecule and negative charges in AP makes the electrostatic potential distributions of TKX-50-AP compounds different from that of TKX-50 and AP.The interaction energies of TKX-50-AP 1,TKX-50-AP 2 and TKX-50-AP 3 are 39.743 kJ/mol,61.206 kJ/mol and 27.702 kJ/mol,respectively.The interaction between TKX-50 molecules and AP molecules in TKX-50-AP mixed crystals both depends on hydrogen bonds and van der Waals force,and the number and strength of hydrogen bonds are significantly greater than that of van der Waals force.The composition of AP and TKX-50 makes the absorption peak of the five-membered rings and NH_3 OH^+ of TKX-50 shift to low wavenumber in the infrared spectroscopy.In general,TKX-50 interacts with AP via hydrogen bonds and van der Waals force,and the calculated results are
文摘Two-dimensional(2D)carbon nitride(CN)photocatalysts are attracting extensive attention owing to their excellent photocatalytic properties.In this study,we successfully prepared CN materials with heterogeneous structures via hydrothermal treatment,high-temperature roasting,ball milling,sintering,and other processes.Benefitting from interface interactions in hybrid architectures,the CN photocatalysts exhibited high photocatalytic activity.The rate of hydrogen production using these CN photocatalysts reached 17028.82μmol h^(−1)g^(−1),and the apparent quantum efficiency was 11.2%at 420 nm.The ns-level time-resolved photoluminescence(PL)spectra provided information about the time-averaged lifetime of fluorescence charge carriers;the lifetime of the charge carriers causing the fluorescence of CN reached 9.99 ns.Significantly,the CN photocatalysts displayed satisfactory results in overall water splitting without the addition of sacrificial agents.The average hydrogen and oxygen production rates were 270.95μmol h^(−1)g^(−1)and 115.21μmol h^(−1)g^(−1)in 7 h,respectively,which were promising results for the applications of the catalysts in overall water splitting processes.We investigated the high efficiency of the prepared CN photocatalysts via a series of tests(UV-vis diffuse reflectance spectroscopy,photocurrent response measurements,PL emission spectroscopy,time-resolved PL spectroscopy,and Brunauer-Emmett-Teller analysis).Furthermore,the Mott-Schottky plot and current-voltage curve were acquired via electrochemical tests.The fabricated CN photocatalyst had a small p-n junction in its heterogeneous structure,which further enhanced its photocatalytic efficiency.Therefore,this work can promote the development of CN photocatalysts.
基金the funding from Zhejiang Provincial Natural Science Foundation of China under Grant No.LZY23B030004.
文摘MXene nanomaterials have attracted great interest as the electrode of supercapacitors.However,its energy storage mecha-nisms in organic electrolytes are still unclear.This work investigated the size effect of cations(i.e.,Lit,Nat,K^(+),and EMIM^(+))on the capacitive behaviors of MXene-based supercapacitors.The experimental results demonstrate that the specific capacitance increases obviously with decreasing cation size(i.e.,from 43 F g^(-1)(EMIM^(+))to 129 F g^(-1)(Li^(+))at 2 mV s^(-1)).Density-functional theory calculation reveals a correlation between cation size and ion-electrode surface interaction,sup-porting experimental observations of the capacitive-dominant behavior.Molecular dynamics simulations reveal that the ionic solvation structure and desolvation degree of intercalated cations as a function of solvation size,providing dynamic insights into the experimentally observed specific capacitance trends.Our comprehensive experimental and computational study provides valuable insights into the intricate solvation effects governing the charge storage mechanisms.This finding of ion dynamics,solvation structure,and desolvation may contribute to guide the design and optimization of appropriate ions/electrolytes combinations for MXene-based supercapacitors.
基金support for this work provided by the National Natural Science Foundation of China(Nos.22173051 and 21829301).
文摘Polymer density-functional theories(PDFTs)have distinct advantages in the study of polyelectrolyte(PE)systems over experiments and molecular simulations.Here we give an introductory review of some PDFTs recently developed for PE systems.We start with a general formalism of PDFTs and its relation to the widely used polymer self-consistent field theory(SCFT),then explain the various correlations that are neglected in SCFT but can be accounted for in PDFTs,including those due to the excluded-volume interaction and chain connectivity of uncharged polymers,the electrostatic correlations of small ions,and the chain correlations in PEs.We also list some applications of PDFTs for PE systems,and finally give some perspectives on future work.We hope that our review can attract more researchers to apply and further develop PDFTs as a promising class of theoretical and computational tools.
基金the financial support from the National Natural Science Foundation of China(Nos.21606163 and 21878205)Coal Bed Methane Joint Foundation of Shanxi(2016012006)+2 种基金Foundation of State Key Laboratory of Coal Conversion(J18-19-610)Welch Foundation(grant AX-1730)the Distinguished Scientist Fellowship Program(DSFP)at KSU.
文摘Separation of ethane from ethylene is a very important but challenging process in the petrochemical industry.Finding an alternative method would reduce the energy needed to make 170 million tons of ethylene manufactured worldwide each year.Adsorptive separation using C2H6-selective porous materials to directly produce high-purity C2H4 is more energy-efficient.We herein report the"reversed C2H6/C2H4 adsorption"in a metal–organic framework Cr-BTC via the introduction of oxygen on its open metal sites.The oxidized Cr-BTC(O2)can bind C2H6 over C2H4 through the active Cr-superoxo sites,which was elucidated by the gas sorption isotherms and density functional theory calculations.This material thus exhibits a good performance for the separation of 50/50 C2H6/C2H4 mixtures to produce 99.99%pure C2H4 in a single separation operation.
基金supported by the Foundation of Chongqing Science and Technology Commission (Grant Nos.CSTC2009AC4187,CSTC2008BB4408)
文摘A1N is used as high power LED package material because of its excellent thermal conductivity. But its poor adhesive with metal is not compatible with the later processing sequence. The properties of the bonding between the deposited palladium, silver, copper and the clean Al-terminated (0001) surface of wurtzite AIN are investigated by using the density-functional the- ory. The results show that the sites of deposited metal atoms on N site are more stable than that on A1 site. Relaxations are found at all the studied interfaces. The bonding energies of Pd/A1N, Ag/A1N and Cu/A1N are respectively 2.75, 1.98, 2.26 eV. Hybridizations of s orbit and p orbit of the deposited metal atoms are observed, which contributes to the bonding energy of interface. The moving to lower energy state of the d orbit and the easier transfer of electrons to semi-empty d orbit in the case of deposited Pd results in the higher bonding energy of Pd/A1N interface.
基金Supported by the National Natural Science Foundation of China under Grant No 10375024, and the Science Foundation of Hunan Educational Committee.
文摘According to the acceptance ratio method, the influences on the depletion interactions between a large sphere and a plate from another closely placed large sphere are studied by Monte Carlo simulation. The numerical results show that both the depletion potential and depletion force are affected by the presence of the closely placed large sphere; the closer the large sphere are placed to them, the larger the influence will be. Furthermore, the influences on the depletion interactions from another large sphere are more sensitive to the angle than to the distance.
基金Project supported by the National Natural Science Foundation of China(Grant No.51002135)
文摘The structural stability and the elastic properties of a novel structure of lead titanate, which is named pre- perovskite PbTiO3 (PP-PTO) and is constructed with TiO6 octahedral columns arranged in a one-dimensional manner, are investigated by using first-principles calculations. PP-PTO is energetically unstable compared with conventional perovskite phases, however it is mechanically stable. The equilibrium transition pressures for changing from pre- perovskite to cubic and tetragonal phases are -0.5 GPa and -1.4 GPa, respectively, with first-order characteristics. Further, the differences in elastic properties between pre-perovskite and conventional perovskite phases are discussed for the covalent bonding network, which shows a highly anisotropic character in PP-PTO. This study provides a crucial insight into the structural stabilities of PP-PTO and conventional perovskite.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11347199,11072225,10874141,and 10974160)the Specialized Research Fund for Doctoral Program of Higher Education of China(Grant No.20130184120028)+1 种基金the National Basic Research Program of China(GrantNo.2011CB808201)the Fundamental Research Funds for the Central Universities,China(Grant Nos.SWJTU112T23 and 2682013CX054)
文摘First-principles calculations of structural, electronic, optical, elastic, mechanical properties, and Born effective charges of monoclinic HfO2 are performed with the plane-wave pseudopotential technique based on the density-functional theory. The calculated structural properties are consistent with the previous theoretical and experimental results. The electronic structure reveals that monoclinic HfO2 has an indirect band gap. The analyses of density of states and Mulliken charges show mainly covalent nature in Hf-O bonds. Optical properties, including the dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function, and optical conductivity each as a function of photon energy are calculated and show an optical anisotropy. Moreover, the independent elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, compressibility, Lam6 constant, sound velocity, Debye temperature, and Born effective charges of monoclinic HfO2 are obtained, which may help to understand monoclinic HfO2 for future work.
基金Project(51164001)supported by the National Natural Science Foundation of China
文摘First-principles calculations are performed to investigate the relaxation and electronic properties of sulfide minerals surfaces(MoS2, Sb2S3, Cu2 S, ZnS, PbS and FeS2) in presence of H2 O molecule. The calculated results show that the structure and electronic properties of sulfide minerals surfaces have been influenced in presence of H2 O molecule. The adsorption of the flotation reagent at the interface of mineral-water would be different from that of mineral surface due to the changes of surface structures and electronic properties caused by H2 O molecule. Hence, the influence of H2 O molecule on the reaction of flotation reagent with sulfide mineral surface will attract more attention.
基金financially supported by the National Natural Science Foundation of China(Grant No.12005221)。
文摘First-principles calculation of muons in ionic fluorides has been proposed recently.However,there is a considerable difference between the obtained F-μbond length and the experimental data obtained by muon spin relaxation(μSR).Considering that the difference may be caused by ignoring the quantum effect of muons,we use two-component density functional theory(TCDFT)to consider the quantized muon and recalculate the bond length and theμSR depolarization spectrum.After testing several muon-electron correlation,we show that TCDFT can give better results than the commonly used“DFT+μ”.
基金financially supported by the National Natural Science Foundation of China (Nos. 22179031 and 22109111)the Natural Science Foundation of Zhejiang Province (Nos. LY22B030008 and LQ22B030006)+3 种基金the Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the 111 Projectthe Open Research Fund of CNMGE Platform & NSCC-TJ (No. CNGME202101006)the support from Hefei advanced computing center。
文摘Redox-active organic materials are emerging as the new playground for the design of new exciting battery materials for rechargeable batteries because of the merits including structural diversity and tunable electrochemical properties that are not easily accessible for the inorganic counterparts.More importantly,the sustainability developed by using naturally abundant chemical elements(C,H,N,O and S) makes them as an ideal alternative material for Li-ion batteries(LIBs).However,the identification and screening of proper organic materials is still challenging in the past decades.Assisted by the artificial intelligence,this review will give a summary of the theoretical design aspects of redox-active organic materials from densityfunctional theory(DFT) to machine learning(ML) methods in the past two decades,with a particular emphasis on the calculation method to predict the chemical/electrochemical stability and reversibility.This review will also analyze and discuss the challenges and perspectives for the development of organic battery materials.
基金supported by the National Natural Science Foundation of China(Grant No.62174151 and 61775201)the Fund of Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ22F040003 and LY22A040002).
文摘Van der Waals semiconductor heterostructures(VSHs)composed of two or more two-dimensional(2D)materials with different band gaps exhibit huge potential for exploiting high-performance multifunctional devices.The application of 2D VSHs in atomically thin devices highly depends on the control of their carrier type and density.Herein,on the basis of comprehensive first-principles calculations,we report a new strategy to manipulate the doping polarity and carrier density in a class of 2D VSHs consisting of atomically thin transition metal dichalcogenides(TMDs)andα-In_(2)X_(3)(X=S,Se)ferroelectrics via switchable polarization field.Our calculated results indicate that the band bending of In_(2)X_(3)layer driven by the FE polarization can be utilized for engineering the band alignment and doping polarity of TMD/In_(2)X_(3)VSHs,which enables us to control their carrier density and type of the VSHs by the orientation and magnitude of local FE polarization field.Inspired by these findings,we demonstrate that doping-free p–n junctions achieved in MoTe2/In2Se3 VSHs exhibit high carrier density(1013–1014 cm–2),and the inversion of the VHSs from n–p junctions to p–i–n junctions has been realized by the polarization switching from upward to downward states.This work provides a nonvolatile and nondestructive doping strategy for obtaining programmable p–n van der Waals(vdW)junctions and opens the possibilities for self-powered and multifunctional device applications.
基金supported by the National Natural Science Foundation of China (Grant Nos.22176181,11874329,11934020,and U1930121)the Foundation of the President of China Academy of Engineering Physics (Grant No.YZJJZQ2022011)the Foundation of Science and Technology on Surface Physics and Chemistry Laboratory (Grant No.WDZC202101)。
文摘We investigate the electronic structure ofβ-uranium,which has five nonequivalent atomic sites in its unit cell,by means of the density functional theory plus Hubbard-U correction with U from linear response calculation.It is found that the 5f electronic correlations inβ-uranium are moderate.More interestingly,their strengths are site selective,depending on the local atomic environment of the present uranium atom.As a consequence,the occupation matrices and partial 5f density of states ofβ-uranium manifest site dependence.In addition,the complicate experimental structure ofβ-uranium could be well reproduced within this theoretical framework.
文摘In Quantum Information Theory(QIT) the classical measures of information content in probability distributions are replaced by the corresponding resultant entropic descriptors containing the nonclassical terms generated by the state phase or its gradient(electronic current). The classical Shannon(S[p]) and Fisher(I[p]) information terms probe the entropic content of incoherent local events of the particle localization, embodied in the probability distribution p, while their nonclassical phase-companions, S[ Φ ] and I[ Φ ], provide relevant coherence information supplements.Thermodynamic-like couplings between the entropic and energetic descriptors of molecular states are shown to be precluded by the principles of quantum mechanics. The maximum of resultant entropy determines the phase-equilibrium state, defined by "thermodynamic" phase related to electronic density,which can be used to describe reactants in hypothetical stages of a bimolecular chemical reaction.Information channels of molecular systems and their entropic bond indices are summarized, the complete-bridge propagations are examined, and sequential cascades involving the complete sets of the atomic-orbital intermediates are interpreted as Markov chains. The QIT description is applied to reactive systems R = A―B, composed of the Acidic(A) and Basic(B) reactants. The electronegativity equalization processes are investigated and implications of the concerted patterns of electronic flows in equilibrium states of the complementarily arranged substrates are investigated. Quantum communications between reactants are explored and the QIT descriptors of the A―B bond multiplicity/composition are extracted.
基金This work is partly supported by the MOST of China(Grant No.2001CB610503)the National Natural Science Foundation of China(Grant Nos.60231010,50202001)+1 种基金the Natural Science Foundation of Beijing(Grant No.4042017)the Doctoral Foundation of the Ministry of Education of China(Grant No.20020001003).
文摘By using density-functional-theory based DMol3 code, the structure optimizations are performed on a short charged single-walled carbon nanotube. Results show that the total energy of the nanotube exhibits a parabolic variation with respect to the amount of extra charge, and one negatively charged nanotube has the lowest total energy; thus the carbon nanotube has a positive electron affinity. When the charge is small, the variation of the atomic structure of the nanotube is also small, and neglecting the atomic structure variation leads to the qualitatively correct properties of the total energy and the energy of the highest occupied molecular orbital. When the extra charge is large, the end structure of the nanotube will be first affected and form into a trumpet shape. With the increasing of the extra charge, the nanotube end gradually becomes unstable, and this may lead to the ultimate destruction of the nanotube.
基金supported by the National Natural Science Foundation of China (Grand Nos. 61927901, 11674241, 11574304, and 11774338)supported by the Director, Office of Science (SC), Basic Energy Science (BES)/Materials Science and Engineering Division (MSED) of the US Department of Energy (DOE) (Grant No. DE-AC02-05CH11231) through the Theory of Material project
文摘Nonradiative carrier recombinations at deep centers in semiconductors are of great importance for both fundamental physics and device engineering.In this article,we provide a revised analysis of Huang's original nonradiative multi-phonon(NMP)theory with ab initio calculations.First,we confirmed at the first-principles level that Huang's concise formula gives the same results as the matrix-based formula,and that Huang's high-temperature formula provides an analytical expression for the coupling constant in Marcus theory.Secondly,we correct for anharmonic effects by taking into account local phonon-mode variations for different charge states of a defect.The corrected capture rates for defects in GaN and SiC agree well with experiments.
基金supported by the Basic Research Project of Natural Science Foundation of Shandong Province(ZR2018ZB0751)the National Natural Science Foundation of China(11774201)the Taishan Scholar Program of Shandong Province。
文摘Multifunctional catalysts that integrate high efficiency hydrogen evolution reaction(HER), oxygen evolution reaction(OER) and oxygen reduction reaction(ORR) catalytic activity in a single material are attractive for unitized regenerative fuel cells and overall water splitting technologies. As the best-known HER and ORR electrocatalysts, Pt and its alloys have only moderate OER activity. Ruthenium and iridium oxides exhibit the highest OER activities but not as active as Pt for HER and ORR. Here, we proposed a general principle for achieving trifunctional electrocatalysis for three reactions in a single material. Using the newly-synthesized pyrazine-modified graphdiyne(PR-GDY) as an example, we demonstrated that the synergistic effect of the pyridinic nitrogen and anchored transition-metal(TM) single atoms renders highly-efficient HER/OER/ORR trifunctional electrocatalytic activity. For the Ni-doped PR-GDY, the overpotentials for HER, OER and ORR can be respectively as low as -0.05, 0.29 and 0.38 V, which are comparable or even superior to the best-known single-functional and bi-functional precious electrocatalysts.These computational results offer not only a promising trifunctional electrocatalyst but also a strategy for the design of multifunctional electrocatalysts.
基金A.B.acknowledges INST Mohali for providing instrumental support and fellowship.R.S.D.acknowledges Department of Science and Technology,Science and Engineering Research Board(DST SERB)(CRG/2020/005683)funding agency for financial supportRT thanks Board of Research in Nuclear Sciences(BRNS),India,for financial support(Grant No.37(2)/20/14/2018-BRNS/37144)National Supercomputer Mission(NSM),India,for financial support(Ref No:DST/NSM/R&D_HPC_Applications/2021/19).
文摘Ammonia has been recognized as the future renewable energy fuel because of its wide-ranging applications in H_(2) storage and transportation sector.In order to avoid the environmentally hazardous Haber-Bosch process,recently,the third-generation ambient ammonia synthesis has drawn phenom-enal attention and thus tremendous efforts are devoted to developing efficient electrocatalysts that would circumvent the bottlenecks of the electrochemical nitrogen reduction reaction(NRR)like competitive hydrogen evolution reac-tion,poor selectivity of N_(2) on catalyst surface.Herein,we report the synthesis of an oxygen-functionalized boron carbonitride matrix via a two-step pyrolysis technique.The conductive BNCO(1000)architecture,the compatibility of B-2p_(z) orbital with the N-2p_(z) orbital and the charging effect over B due to the C and O edge-atoms in a pentagon altogether facilitate N_(2) adsorption on the B edge-active sites.The optimum electrolyte acidity with 0.1 M HCl and the lowered anion crowding effect aid the protonation steps of NRR via an associative alternating pathway,which gives a sufficiently high yield of ammonia(211.5μg h^(−1) mg_(cat)^(−1))on the optimized BNCO(1000)catalyst with a Faradaic efficiency of 34.7%at−0.1 V vs RHE.This work thus offers a cost-effective electrode material and provides a contemporary idea about reinforcing the charging effect over the secured active sites for NRR by selectively choosing the electrolyte anions and functionalizing the active edges of the BNCO(1000)catalyst.