卷积神经网络模型能够提取图像不同层次的分层特征,提取图像包含有大量的细节信息,然而,现有方法没有充分利用网络模型提取的所有分层特征。为了充分利用所有分层特征,增强特征重利用和信息连续传递,设计了适用于高光谱图像分类的残差...卷积神经网络模型能够提取图像不同层次的分层特征,提取图像包含有大量的细节信息,然而,现有方法没有充分利用网络模型提取的所有分层特征。为了充分利用所有分层特征,增强特征重利用和信息连续传递,设计了适用于高光谱图像分类的残差密集网络模型。残差密集网络结合了残差网络和密集网络,包括浅层特征提取、残差密集单元和密集特征融合三部分。利用卷积操作提取原始图像的浅层特征,将浅层特征作为残差密集单元的输入,残差密集单元的输出与下一个单元中每个卷积层的输出建立短连接,实现了信息连续传递;将两个单元提取的密集特征与浅层特征相加形成全局残差学习,实现了所有分层特征的融合,最终的融合特征用于高光谱图像分类。实验表明,本文方法用于Indian Pines数据、University of Pavia数据及Salinas数据能够分别取得98.71%、99.31%及97.91%的分类精度,有效提高了高光谱图像的分类精度,增强了分类方法的稳定性。展开更多
针对红外与可见光图像融合算法中多尺度特征提取方法损失细节信息,且现有的融合策略无法平衡视觉细节特征和红外目标特征,出了基于空洞卷积与双注意力机制(Dilated Convolution and Dual AttentionMechanism,DCDAM)的融合网络。该网络...针对红外与可见光图像融合算法中多尺度特征提取方法损失细节信息,且现有的融合策略无法平衡视觉细节特征和红外目标特征,出了基于空洞卷积与双注意力机制(Dilated Convolution and Dual AttentionMechanism,DCDAM)的融合网络。该网络首先通过多尺度编码器从图像中提取原始特征,其中编码器利用空洞卷积来系统地聚合多尺度上下文信息而不通过下采样算子。其次,在融合策略中引入双注意力机制,将获得的原始特征输入到注意力模块进行特征增强,获得注意力特征;原始特征和注意力特征合成最终融合特征,得在不丢失细节信息的情况下捕获典型信息,同时抑制融合过程中的噪声干扰。最后,解码器采用全尺度跳跃连接和密集网络对融合特征进行解码生成融合图像。通过实验表明,DCDAM比其他同类有代表性的方法在定性和定量指标评价都有提高,体现良好的融合视觉效果。展开更多
针对眼底视网膜血管图像特征信息复杂,现有的血管分割算法对细小血管特征难以采集和血管误分割等问题,提出一种融合U-Net网络和密集网络的分割方法.首先,提取眼底图像的绿通道,通过限制对比度自适应直方图均衡化对图像进行血管增强处理...针对眼底视网膜血管图像特征信息复杂,现有的血管分割算法对细小血管特征难以采集和血管误分割等问题,提出一种融合U-Net网络和密集网络的分割方法.首先,提取眼底图像的绿通道,通过限制对比度自适应直方图均衡化对图像进行血管增强处理,其次,利用局部自适应Gamma校正来调整眼底图像的亮度信息,同时在卷积层之间引入一种动态激活函数,提高网络的特征表达能力,最后输入到改进网络模型中进行分割.该算法在DRIVE(digital retinal images for vessel extraction)和STARE(structured analysis of the retina)两个公开数据集上的准确率分别为96.28%和96.85%,特异性分别为98.46%和98.55%,灵敏度分别为80.47%和81.38%.实验表明所提方法能够准确识别并分割出眼底细微血管,提高了视网膜血管分割的准确率.展开更多
Removing rain from a single image is a challenging task due to the absence of temporal information. Considering that a rainy image can be decomposed into the low-frequency(LF) and high-frequency(HF) components, where ...Removing rain from a single image is a challenging task due to the absence of temporal information. Considering that a rainy image can be decomposed into the low-frequency(LF) and high-frequency(HF) components, where the coarse scale information is retained in the LF component and the rain streaks and texture correspond to the HF component, we propose a single image rain removal algorithm using image decomposition and a dense network. We design two task-driven sub-networks to estimate the LF and non-rain HF components of a rainy image. The high-frequency estimation sub-network employs a densely connected network structure, while the low-frequency sub-network uses a simple convolutional neural network(CNN).We add total variation(TV) regularization and LF-channel fidelity terms to the loss function to optimize the two subnetworks jointly. The method then obtains de-rained output by combining the estimated LF and non-rain HF components.Extensive experiments on synthetic and real-world rainy images demonstrate that our method removes rain streaks while preserving non-rain details, and achieves superior de-raining performance both perceptually and quantitatively.展开更多
文摘卷积神经网络模型能够提取图像不同层次的分层特征,提取图像包含有大量的细节信息,然而,现有方法没有充分利用网络模型提取的所有分层特征。为了充分利用所有分层特征,增强特征重利用和信息连续传递,设计了适用于高光谱图像分类的残差密集网络模型。残差密集网络结合了残差网络和密集网络,包括浅层特征提取、残差密集单元和密集特征融合三部分。利用卷积操作提取原始图像的浅层特征,将浅层特征作为残差密集单元的输入,残差密集单元的输出与下一个单元中每个卷积层的输出建立短连接,实现了信息连续传递;将两个单元提取的密集特征与浅层特征相加形成全局残差学习,实现了所有分层特征的融合,最终的融合特征用于高光谱图像分类。实验表明,本文方法用于Indian Pines数据、University of Pavia数据及Salinas数据能够分别取得98.71%、99.31%及97.91%的分类精度,有效提高了高光谱图像的分类精度,增强了分类方法的稳定性。
文摘针对红外与可见光图像融合算法中多尺度特征提取方法损失细节信息,且现有的融合策略无法平衡视觉细节特征和红外目标特征,出了基于空洞卷积与双注意力机制(Dilated Convolution and Dual AttentionMechanism,DCDAM)的融合网络。该网络首先通过多尺度编码器从图像中提取原始特征,其中编码器利用空洞卷积来系统地聚合多尺度上下文信息而不通过下采样算子。其次,在融合策略中引入双注意力机制,将获得的原始特征输入到注意力模块进行特征增强,获得注意力特征;原始特征和注意力特征合成最终融合特征,得在不丢失细节信息的情况下捕获典型信息,同时抑制融合过程中的噪声干扰。最后,解码器采用全尺度跳跃连接和密集网络对融合特征进行解码生成融合图像。通过实验表明,DCDAM比其他同类有代表性的方法在定性和定量指标评价都有提高,体现良好的融合视觉效果。
文摘针对眼底视网膜血管图像特征信息复杂,现有的血管分割算法对细小血管特征难以采集和血管误分割等问题,提出一种融合U-Net网络和密集网络的分割方法.首先,提取眼底图像的绿通道,通过限制对比度自适应直方图均衡化对图像进行血管增强处理,其次,利用局部自适应Gamma校正来调整眼底图像的亮度信息,同时在卷积层之间引入一种动态激活函数,提高网络的特征表达能力,最后输入到改进网络模型中进行分割.该算法在DRIVE(digital retinal images for vessel extraction)和STARE(structured analysis of the retina)两个公开数据集上的准确率分别为96.28%和96.85%,特异性分别为98.46%和98.55%,灵敏度分别为80.47%和81.38%.实验表明所提方法能够准确识别并分割出眼底细微血管,提高了视网膜血管分割的准确率.
基金supported by the National Natural Science Foundation of China(61471313)the Natural Science Foundation of Hebei Province(F2019203318)
文摘Removing rain from a single image is a challenging task due to the absence of temporal information. Considering that a rainy image can be decomposed into the low-frequency(LF) and high-frequency(HF) components, where the coarse scale information is retained in the LF component and the rain streaks and texture correspond to the HF component, we propose a single image rain removal algorithm using image decomposition and a dense network. We design two task-driven sub-networks to estimate the LF and non-rain HF components of a rainy image. The high-frequency estimation sub-network employs a densely connected network structure, while the low-frequency sub-network uses a simple convolutional neural network(CNN).We add total variation(TV) regularization and LF-channel fidelity terms to the loss function to optimize the two subnetworks jointly. The method then obtains de-rained output by combining the estimated LF and non-rain HF components.Extensive experiments on synthetic and real-world rainy images demonstrate that our method removes rain streaks while preserving non-rain details, and achieves superior de-raining performance both perceptually and quantitatively.