In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified medi...In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition.展开更多
目的医学影像获取和视频监控过程中会出现一些恶劣环境,导致图像有许多强噪声斑点,质量较差。在处理强噪声图像时,传统的基于变分模型的算法,因需要计算高阶偏微分方程,计算复杂且收敛较慢;而隐式使用图像曲率信息的曲率滤波模型,在处...目的医学影像获取和视频监控过程中会出现一些恶劣环境,导致图像有许多强噪声斑点,质量较差。在处理强噪声图像时,传统的基于变分模型的算法,因需要计算高阶偏微分方程,计算复杂且收敛较慢;而隐式使用图像曲率信息的曲率滤波模型,在处理强噪声图像时,又存在去噪不完全的缺陷。为了克服这些缺陷,在保持图像边缘和细节特征的同时去除图像的强噪声,实现快速去噪,提出了一种改进的曲率滤波算法。方法本文算法在隐式计算曲率时,通过半窗三角切平面和最小三角切平面的组合,用投影算子代替传统曲率滤波的最小三角切平面投影算子,并根据强噪声图像存在强噪声斑点的特征,修正正则能量函数,增添局部方差的正则能量,使得正则项的约束更加合理,提高了算法的去噪性能,从而达到增强去噪能力和保护图像边缘与细节的目的。结果针对多种不同强度的混合噪声图像对本文算法性能进行测试,并与传统的基于变分法的去噪算法(ROF)和曲率滤波去噪等算法进行去噪效果对比,同时使用峰值信噪比(PSNR)和结构相似性(SSIM)作为滤波算法性能的客观评价指标。本文算法在对强噪声图像去噪处理时,能够有效地保持图像的边缘和细节特征,具备较好的PSNR和SSIM,在PSNR上比ROF模型和曲率滤波算法分别平均提高1. 67 d B和2. 93 d B,SSIM分别平均提高0. 29和0. 26。由于采用了隐式计算图像曲率,算法的处理速度与曲率滤波算法相近。结论根据强噪声图像噪声特征对曲率滤波算法进行优化,改进投影算子和能量函数正则项,使得曲率滤波算法能够更好地适用于强噪声图像,实验结果表明,该方法与传统的变分法相比,对强噪声图像去噪效果显著。展开更多
基金Project(2016JJ4074)supported by the Natural Science Foundation of Hunan Province,ChinaProject(14C0920)supported by the Hunan Provincial Education Department,ChinaProject(61771191)supported by the National Natural Science Foundation of China
文摘In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition.
文摘目的医学影像获取和视频监控过程中会出现一些恶劣环境,导致图像有许多强噪声斑点,质量较差。在处理强噪声图像时,传统的基于变分模型的算法,因需要计算高阶偏微分方程,计算复杂且收敛较慢;而隐式使用图像曲率信息的曲率滤波模型,在处理强噪声图像时,又存在去噪不完全的缺陷。为了克服这些缺陷,在保持图像边缘和细节特征的同时去除图像的强噪声,实现快速去噪,提出了一种改进的曲率滤波算法。方法本文算法在隐式计算曲率时,通过半窗三角切平面和最小三角切平面的组合,用投影算子代替传统曲率滤波的最小三角切平面投影算子,并根据强噪声图像存在强噪声斑点的特征,修正正则能量函数,增添局部方差的正则能量,使得正则项的约束更加合理,提高了算法的去噪性能,从而达到增强去噪能力和保护图像边缘与细节的目的。结果针对多种不同强度的混合噪声图像对本文算法性能进行测试,并与传统的基于变分法的去噪算法(ROF)和曲率滤波去噪等算法进行去噪效果对比,同时使用峰值信噪比(PSNR)和结构相似性(SSIM)作为滤波算法性能的客观评价指标。本文算法在对强噪声图像去噪处理时,能够有效地保持图像的边缘和细节特征,具备较好的PSNR和SSIM,在PSNR上比ROF模型和曲率滤波算法分别平均提高1. 67 d B和2. 93 d B,SSIM分别平均提高0. 29和0. 26。由于采用了隐式计算图像曲率,算法的处理速度与曲率滤波算法相近。结论根据强噪声图像噪声特征对曲率滤波算法进行优化,改进投影算子和能量函数正则项,使得曲率滤波算法能够更好地适用于强噪声图像,实验结果表明,该方法与传统的变分法相比,对强噪声图像去噪效果显著。