SDN (Software Defined Network) has many security problems, and DDoS attack is undoubtedly the most serious harm to SDN architecture network. How to accurately and effectively detect DDoS attacks has always been a diff...SDN (Software Defined Network) has many security problems, and DDoS attack is undoubtedly the most serious harm to SDN architecture network. How to accurately and effectively detect DDoS attacks has always been a difficult point and focus of SDN security research. Based on the characteristics of SDN, a DDoS attack detection method combining generalized entropy and PSOBP neural network is proposed. The traffic is pre-detected by the generalized entropy method deployed on the switch, and the detection result is divided into normal and abnormal. Locate the switch that issued the abnormal alarm. The controller uses the PSO-BP neural network to detect whether a DDoS attack occurs by further extracting the flow features of the abnormal switch. Experiments show that compared with other methods, the detection accurate rate is guaranteed while the CPU load of the controller is reduced, and the detection capability is better.展开更多
In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term ...In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term consequences that businesses encounter. This study integrates findings from various research, including quantitative reports, drawing upon real-world incidents faced by both small and large enterprises. This investigation emphasizes the profound intangible costs, such as trade name devaluation and potential damage to brand reputation, which can persist long after the breach. By collating insights from industry experts and a myriad of research, the study provides a comprehensive perspective on the profound, multi-dimensional impacts of cybersecurity incidents. The overarching aim is to underscore the often-underestimated scope and depth of these breaches, emphasizing the entire timeline post-incident and the urgent need for fortified preventative and reactive measures in the digital domain.展开更多
The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communicati...The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.展开更多
In unstructured peer-to-peer (P2P) systems such as Gnutella, a general routing search algorithm is used to blindly flood a query through network among peers. But unfortunately, malicious nodes could easily make use ...In unstructured peer-to-peer (P2P) systems such as Gnutella, a general routing search algorithm is used to blindly flood a query through network among peers. But unfortunately, malicious nodes could easily make use of the search approach launching distributed denial of service (DDoS) attack which aims at the whole network. In order to alleviate or minimize the bad effect due to behavior of malicious nodes using the flooding search mechanism, the paper proposes a Markov-based evaluation model which exerts the trust and reputation mechanism to computing the level of trustworthy of nodes having the information requested by evaluation of the nodes' history behavior. Moreover, it can differentiate malicious nodes as early as possible for isolating and controlling the ones' message transmitted. The simulation results of the algorithm proposed show that it could effectively isolate malicious nodes, and hold back the transmission of vicious messages so that it could enhance tolerance of DDoS based on flooding in Guutella-like P2P network.展开更多
Over time, the world has transformed digitally and there is total dependence on the internet. Many more gadgets are continuously interconnected in the internet ecosystem. This fact has made the Internet a global infor...Over time, the world has transformed digitally and there is total dependence on the internet. Many more gadgets are continuously interconnected in the internet ecosystem. This fact has made the Internet a global information source for every being. Despite all this, attacker knowledge by cybercriminals has advanced and resulted in different attack methodologies on the internet and its data stores. This paper will discuss the origin and significance of Denial of Service (DoS) and Distributed Denial of Service (DDoS). These kinds of attacks remain the most effective methods used by the bad guys to cause substantial damage in terms of operational, reputational, and financial damage to organizations globally. These kinds of attacks have hindered network performance and availability. The victim’s network is flooded with massive illegal traffic hence, denying genuine traffic from passing through for authorized users. The paper will explore detection mechanisms, and mitigation techniques for this network threat.展开更多
Mobile ad hoc networks are particularly vulnerable to denial of service (DOS) attacks launched through compromised nodes or intruders. In this paper, we present a new DOS attack and its defense in ad hoc networks. T...Mobile ad hoc networks are particularly vulnerable to denial of service (DOS) attacks launched through compromised nodes or intruders. In this paper, we present a new DOS attack and its defense in ad hoc networks. The new DOS attack, called AA hoc Flooding Attack(AHFA), is that intruder broadcasts mass Route Request packets to exhaust the communication bandwidth and node resource so that the valid communication can not be kept. After analyzed AM hoc Flooding Attack, we develop Flooding Attack Prevention (FAP), a genetic defense against the AM hoc Flooding Attack. When the intruder broadcasts exceeding packets of Route Request, the immediate neighbors of the intruder record the rate of Route Request. Once the threshold is exceeded, nodes deny any future request packets from the intruder. The results of our implementation show FAP can prevent the AM hoe Flooding attack efficiently.展开更多
Electric power grids are evolving into complex cyber-physical power systems(CPPSs)that integrate advanced information and communication technologies(ICTs)but face increasing cyberspace threats and attacks.This study c...Electric power grids are evolving into complex cyber-physical power systems(CPPSs)that integrate advanced information and communication technologies(ICTs)but face increasing cyberspace threats and attacks.This study considers CPPS cyberspace security under distributed denial of service(DDoS)attacks and proposes a nonzero-sum game-theoretical model with incomplete information for appropriate allocation of defense resources based on the availability of limited resources.Task time delay is applied to quantify the expected utility as CPPSs have high time requirements and incur massive damage DDoS attacks.Different resource allocation strategies are adopted by attackers and defenders under the three cases of attack-free,failed attack,and successful attack,which lead to a corresponding consumption of resources.A multidimensional node value analysis is designed to introduce physical and cybersecurity indices.Simulation experiments and numerical results demonstrate the effectiveness of the proposed model for the appropriate allocation of defense resources in CPPSs under limited resource availability.展开更多
Cloud computing is the technology that is currently used to provide users with infrastructure,platform,and software services effectively.Under this system,Platform as a Service(PaaS)offers a medium headed for a web de...Cloud computing is the technology that is currently used to provide users with infrastructure,platform,and software services effectively.Under this system,Platform as a Service(PaaS)offers a medium headed for a web development platform that uniformly distributes the requests and resources.Hackers using Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks abruptly interrupt these requests.Even though several existing methods like signature-based,statistical anomaly-based,and stateful protocol analysis are available,they are not sufficient enough to get rid of Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks and hence there is a great need for a definite algorithm.Concerning this issue,we propose an improved hybrid algorithm which is a combination of Multivariate correlation analysis,Spearman coefficient,and mitigation technique.It can easily differentiate common traffic and attack traffic.Not only that,it greatly helps the network to distribute the resources only for authenticated requests.The effects of comparing with the normalized information have shown an extra encouraging detection accuracy of 99%for the numerous DoS attack as well as DDoS attacks.展开更多
Intrusion Detection Systems (IDS) are pivotal in safeguarding computer networks from malicious activities. This study presents a novel approach by proposing a Hybrid Dense Neural Network-Radial Basis Function Neural N...Intrusion Detection Systems (IDS) are pivotal in safeguarding computer networks from malicious activities. This study presents a novel approach by proposing a Hybrid Dense Neural Network-Radial Basis Function Neural Network (DNN-RBFNN) architecture to enhance the accuracy and efficiency of IDS. The hybrid model synergizes the strengths of both dense learning and radial basis function networks, aiming to address the limitations of traditional IDS techniques in classifying packets that could result in Remote-to-local (R2L), Denial of Service (Dos), and User-to-root (U2R) intrusions.展开更多
The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are ...The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.展开更多
Cloud computing environments,characterized by dynamic scaling,distributed architectures,and complex work-loads,are increasingly targeted by malicious actors.These threats encompass unauthorized access,data breaches,de...Cloud computing environments,characterized by dynamic scaling,distributed architectures,and complex work-loads,are increasingly targeted by malicious actors.These threats encompass unauthorized access,data breaches,denial-of-service attacks,and evolving malware variants.Traditional security solutions often struggle with the dynamic nature of cloud environments,highlighting the need for robust Adaptive Cloud Intrusion Detection Systems(CIDS).Existing adaptive CIDS solutions,while offering improved detection capabilities,often face limitations such as reliance on approximations for change point detection,hindering their precision in identifying anomalies.This can lead to missed attacks or an abundance of false alarms,impacting overall security effectiveness.To address these challenges,we propose ACIDS(Adaptive Cloud Intrusion Detection System)-PELT.This novel Adaptive CIDS framework leverages the Pruned Exact Linear Time(PELT)algorithm and a Support Vector Machine(SVM)for enhanced accuracy and efficiency.ACIDS-PELT comprises four key components:(1)Feature Selection:Utilizing a hybrid harmony search algorithm and the symmetrical uncertainty filter(HSO-SU)to identify the most relevant features that effectively differentiate between normal and anomalous network traffic in the cloud environment.(2)Surveillance:Employing the PELT algorithm to detect change points within the network traffic data,enabling the identification of anomalies and potential security threats with improved precision compared to existing approaches.(3)Training Set:Labeled network traffic data forms the training set used to train the SVM classifier to distinguish between normal and anomalous behaviour patterns.(4)Testing Set:The testing set evaluates ACIDS-PELT’s performance by measuring its accuracy,precision,and recall in detecting security threats within the cloud environment.We evaluate the performance of ACIDS-PELT using the NSL-KDD benchmark dataset.The results demonstrate that ACIDS-PELT outperforms existing cloud intrusion detection techni展开更多
基金supported by the Hebei Province Innovation Capacity Improvement Program of China under Grant No.179676278Dthe Ministry of Education Fund Project of China under Grant No.2017A20004
文摘SDN (Software Defined Network) has many security problems, and DDoS attack is undoubtedly the most serious harm to SDN architecture network. How to accurately and effectively detect DDoS attacks has always been a difficult point and focus of SDN security research. Based on the characteristics of SDN, a DDoS attack detection method combining generalized entropy and PSOBP neural network is proposed. The traffic is pre-detected by the generalized entropy method deployed on the switch, and the detection result is divided into normal and abnormal. Locate the switch that issued the abnormal alarm. The controller uses the PSO-BP neural network to detect whether a DDoS attack occurs by further extracting the flow features of the abnormal switch. Experiments show that compared with other methods, the detection accurate rate is guaranteed while the CPU load of the controller is reduced, and the detection capability is better.
文摘In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term consequences that businesses encounter. This study integrates findings from various research, including quantitative reports, drawing upon real-world incidents faced by both small and large enterprises. This investigation emphasizes the profound intangible costs, such as trade name devaluation and potential damage to brand reputation, which can persist long after the breach. By collating insights from industry experts and a myriad of research, the study provides a comprehensive perspective on the profound, multi-dimensional impacts of cybersecurity incidents. The overarching aim is to underscore the often-underestimated scope and depth of these breaches, emphasizing the entire timeline post-incident and the urgent need for fortified preventative and reactive measures in the digital domain.
文摘The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.
基金Supported by the National Natural Science Foundation of China (No.6057312, 60473090)
文摘In unstructured peer-to-peer (P2P) systems such as Gnutella, a general routing search algorithm is used to blindly flood a query through network among peers. But unfortunately, malicious nodes could easily make use of the search approach launching distributed denial of service (DDoS) attack which aims at the whole network. In order to alleviate or minimize the bad effect due to behavior of malicious nodes using the flooding search mechanism, the paper proposes a Markov-based evaluation model which exerts the trust and reputation mechanism to computing the level of trustworthy of nodes having the information requested by evaluation of the nodes' history behavior. Moreover, it can differentiate malicious nodes as early as possible for isolating and controlling the ones' message transmitted. The simulation results of the algorithm proposed show that it could effectively isolate malicious nodes, and hold back the transmission of vicious messages so that it could enhance tolerance of DDoS based on flooding in Guutella-like P2P network.
文摘Over time, the world has transformed digitally and there is total dependence on the internet. Many more gadgets are continuously interconnected in the internet ecosystem. This fact has made the Internet a global information source for every being. Despite all this, attacker knowledge by cybercriminals has advanced and resulted in different attack methodologies on the internet and its data stores. This paper will discuss the origin and significance of Denial of Service (DoS) and Distributed Denial of Service (DDoS). These kinds of attacks remain the most effective methods used by the bad guys to cause substantial damage in terms of operational, reputational, and financial damage to organizations globally. These kinds of attacks have hindered network performance and availability. The victim’s network is flooded with massive illegal traffic hence, denying genuine traffic from passing through for authorized users. The paper will explore detection mechanisms, and mitigation techniques for this network threat.
基金This project was supported by the National"863"High Technology Development Programof China (2003AA148010) Key Technologies R&D Programof China (2002DA103A03 -07)
文摘Mobile ad hoc networks are particularly vulnerable to denial of service (DOS) attacks launched through compromised nodes or intruders. In this paper, we present a new DOS attack and its defense in ad hoc networks. The new DOS attack, called AA hoc Flooding Attack(AHFA), is that intruder broadcasts mass Route Request packets to exhaust the communication bandwidth and node resource so that the valid communication can not be kept. After analyzed AM hoc Flooding Attack, we develop Flooding Attack Prevention (FAP), a genetic defense against the AM hoc Flooding Attack. When the intruder broadcasts exceeding packets of Route Request, the immediate neighbors of the intruder record the rate of Route Request. Once the threshold is exceeded, nodes deny any future request packets from the intruder. The results of our implementation show FAP can prevent the AM hoe Flooding attack efficiently.
基金supported by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(No.2022C01239)National Natural Science Foundation of China(No.52177119)Fundamental Research Funds for the Central Universities(Zhejiang University NGICS Platform).
文摘Electric power grids are evolving into complex cyber-physical power systems(CPPSs)that integrate advanced information and communication technologies(ICTs)but face increasing cyberspace threats and attacks.This study considers CPPS cyberspace security under distributed denial of service(DDoS)attacks and proposes a nonzero-sum game-theoretical model with incomplete information for appropriate allocation of defense resources based on the availability of limited resources.Task time delay is applied to quantify the expected utility as CPPSs have high time requirements and incur massive damage DDoS attacks.Different resource allocation strategies are adopted by attackers and defenders under the three cases of attack-free,failed attack,and successful attack,which lead to a corresponding consumption of resources.A multidimensional node value analysis is designed to introduce physical and cybersecurity indices.Simulation experiments and numerical results demonstrate the effectiveness of the proposed model for the appropriate allocation of defense resources in CPPSs under limited resource availability.
文摘Cloud computing is the technology that is currently used to provide users with infrastructure,platform,and software services effectively.Under this system,Platform as a Service(PaaS)offers a medium headed for a web development platform that uniformly distributes the requests and resources.Hackers using Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks abruptly interrupt these requests.Even though several existing methods like signature-based,statistical anomaly-based,and stateful protocol analysis are available,they are not sufficient enough to get rid of Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks and hence there is a great need for a definite algorithm.Concerning this issue,we propose an improved hybrid algorithm which is a combination of Multivariate correlation analysis,Spearman coefficient,and mitigation technique.It can easily differentiate common traffic and attack traffic.Not only that,it greatly helps the network to distribute the resources only for authenticated requests.The effects of comparing with the normalized information have shown an extra encouraging detection accuracy of 99%for the numerous DoS attack as well as DDoS attacks.
文摘Intrusion Detection Systems (IDS) are pivotal in safeguarding computer networks from malicious activities. This study presents a novel approach by proposing a Hybrid Dense Neural Network-Radial Basis Function Neural Network (DNN-RBFNN) architecture to enhance the accuracy and efficiency of IDS. The hybrid model synergizes the strengths of both dense learning and radial basis function networks, aiming to address the limitations of traditional IDS techniques in classifying packets that could result in Remote-to-local (R2L), Denial of Service (Dos), and User-to-root (U2R) intrusions.
基金extend their appreciation to Researcher Supporting Project Number(RSPD2023R582)King Saud University,Riyadh,Saudi Arabia.
文摘The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.
基金funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)through Research Partnership Program No.RP-21-07-09.
文摘Cloud computing environments,characterized by dynamic scaling,distributed architectures,and complex work-loads,are increasingly targeted by malicious actors.These threats encompass unauthorized access,data breaches,denial-of-service attacks,and evolving malware variants.Traditional security solutions often struggle with the dynamic nature of cloud environments,highlighting the need for robust Adaptive Cloud Intrusion Detection Systems(CIDS).Existing adaptive CIDS solutions,while offering improved detection capabilities,often face limitations such as reliance on approximations for change point detection,hindering their precision in identifying anomalies.This can lead to missed attacks or an abundance of false alarms,impacting overall security effectiveness.To address these challenges,we propose ACIDS(Adaptive Cloud Intrusion Detection System)-PELT.This novel Adaptive CIDS framework leverages the Pruned Exact Linear Time(PELT)algorithm and a Support Vector Machine(SVM)for enhanced accuracy and efficiency.ACIDS-PELT comprises four key components:(1)Feature Selection:Utilizing a hybrid harmony search algorithm and the symmetrical uncertainty filter(HSO-SU)to identify the most relevant features that effectively differentiate between normal and anomalous network traffic in the cloud environment.(2)Surveillance:Employing the PELT algorithm to detect change points within the network traffic data,enabling the identification of anomalies and potential security threats with improved precision compared to existing approaches.(3)Training Set:Labeled network traffic data forms the training set used to train the SVM classifier to distinguish between normal and anomalous behaviour patterns.(4)Testing Set:The testing set evaluates ACIDS-PELT’s performance by measuring its accuracy,precision,and recall in detecting security threats within the cloud environment.We evaluate the performance of ACIDS-PELT using the NSL-KDD benchmark dataset.The results demonstrate that ACIDS-PELT outperforms existing cloud intrusion detection techni