基金This work was partially funded by the Key R&D Programs of Shandong Province,China(Grant Nos.2018CXGC1411 and 2021CXGC010514).
文摘Cuproptosis shows enormous application prospects in lung metastasis treatment.However,the glycolysis,Cu^(+)efflux mechanisms,and insufficient lung drug accumulation severely restrict cuproptosis efficacy.Herein,an inhalable poly(2-(N-oxide-N,N-diethylamino)ethyl methacrylate)(OPDEA)-coated copper-based metal–organic framework encapsulating pyruvate dehydrogenase kinase 1 siRNA(siPDK)is constructed for mediating cuproptosis and subsequently promoting lung metastasis immunotherapy,namely OMP.After inhalation,OMP shows highly efficient lung accumulation and long-term retention,ascribing to the OPDEA-mediated pulmonary mucosa penetration.Within tumor cells,OMP is degraded to release Cu2+under acidic condition,which will be reduced to toxic Cu^(+)to induce cuproptosis under glutathione(GSH)regulation.Meanwhile,siPDK released from OMP inhibits intracellular glycolysis and adenosine-5ʹ-triphosphate(ATP)production,then blocking the Cu^(+)efflux protein ATP7B,thereby rendering tumor cells more sensitive to OMP-mediated cuproptosis.Moreover,OMP-mediated cuproptosis triggers immunogenic cell death(ICD)to promote dendritic cells(DCs)maturation and CD8^(+)T cells infiltration.Notably,OMP-induced cuproptosis up-regulates membrane-associated programmed cell death-ligand 1(PD-L1)expression and induces soluble PD-L1 secretion,and thus synergizes with anti-PD-L1 antibodies(aPD-L1)to reprogram immunosuppressive tumor microenvironment,finally yielding improved immunotherapy efficacy.Overall,OMP may serve as an efficient inhalable nanoplatform and afford preferable efficacy against lung metastasis through inducing cuproptosis and combining with aPD-L1.