针对矿井巷道环境内存在大量的设备和设施,会造成电磁波传播的NLOS(non line of sight)时延、对矿井TOA(time of arrival)定位精度产生不利影响,根据成因将巷道电磁波传播NLOS时延分为随机NLOS时延和固定NLOS时延,分析了两类NLOS时延造...针对矿井巷道环境内存在大量的设备和设施,会造成电磁波传播的NLOS(non line of sight)时延、对矿井TOA(time of arrival)定位精度产生不利影响,根据成因将巷道电磁波传播NLOS时延分为随机NLOS时延和固定NLOS时延,分析了两类NLOS时延造成测距误差的特点。为了分步抑制两类NLOS时延造成的TOA测距定位误差,提出基于改进均值滤波和参数拟合的矿井TOA几何定位算法。针对巷道随机NLOS时延造成的以脉冲形式存在的TOA测距误差,提出基于偏差值丢弃的加权均值滤波算法加以抑制;进而提出依据定位区域巷道固定NLOS时延参数拟合方法,用以抑制其造成的TOA测距正向偏移误差,最后采用几何方法进行目标位置的估计。实验结果表明,提出的方法对巷道NLOS时延造成的TOA定位误差具有显著的抑制作用,能够保证矿井TOA定位的精度。展开更多
A new approach for simultaneous online identification of unknown time delay and dynamic parameters of discrete-time delay systems is proposed in this paper.The proposed algorithm involves constructing a new generalize...A new approach for simultaneous online identification of unknown time delay and dynamic parameters of discrete-time delay systems is proposed in this paper.The proposed algorithm involves constructing a new generalized regression vector and defining the time delay and the rational dynamic parameters in the same vector.The gradient algorithm is used to deal with the identification problem.The effectiveness of this method is illustrated through simulation.展开更多
An improved single image dehazing method based on dark channel prior and wavelet transform is proposed. This pro-posed method employs wavelet transform and guided filter instead of the soft matting procedure to estima...An improved single image dehazing method based on dark channel prior and wavelet transform is proposed. This pro-posed method employs wavelet transform and guided filter instead of the soft matting procedure to estimate and refine the depth map of haze images. Moreover, a contrast enhancement method based on just noticeable difference (JND) and quadratic function is adopted to enhance the contrast for the dehazed image, since the scene radiance is usual y not as bright as the atmospheric light, and the dehazed image looks dim. The experimental results show that the proposed approach can effectively enhance the haze ima-ge and is wel suitable for implementing on the surveil ance and obstacle detection systems.展开更多
In this paper, two kinds of chaotic systems are controlled respectively with and without time-delay to eliminate their chaotic behaviors. First of all, according to the first-order approximation method and the stabili...In this paper, two kinds of chaotic systems are controlled respectively with and without time-delay to eliminate their chaotic behaviors. First of all, according to the first-order approximation method and the stabilization condition of the linear system, one linear feedback controller is structured to control the chaotic system without time-delay, its chaotic behavior is eliminated and stabilized to its equilibrium. After that, based on the first-order approximation method, the Lyapunov stability theorem, and the matrix inequality theory, the other linear feedback controller is structured to control the chaotic system with time-delay and make it stabilized at its equilibrium. Finally, two numerical examples are given to illustrate the correctness and effectiveness of the two linear feedback controllers.展开更多
文摘针对矿井巷道环境内存在大量的设备和设施,会造成电磁波传播的NLOS(non line of sight)时延、对矿井TOA(time of arrival)定位精度产生不利影响,根据成因将巷道电磁波传播NLOS时延分为随机NLOS时延和固定NLOS时延,分析了两类NLOS时延造成测距误差的特点。为了分步抑制两类NLOS时延造成的TOA测距定位误差,提出基于改进均值滤波和参数拟合的矿井TOA几何定位算法。针对巷道随机NLOS时延造成的以脉冲形式存在的TOA测距误差,提出基于偏差值丢弃的加权均值滤波算法加以抑制;进而提出依据定位区域巷道固定NLOS时延参数拟合方法,用以抑制其造成的TOA测距正向偏移误差,最后采用几何方法进行目标位置的估计。实验结果表明,提出的方法对巷道NLOS时延造成的TOA定位误差具有显著的抑制作用,能够保证矿井TOA定位的精度。
基金supported by Ministry of the Higher Education and Scientific Research in Tunisia
文摘A new approach for simultaneous online identification of unknown time delay and dynamic parameters of discrete-time delay systems is proposed in this paper.The proposed algorithm involves constructing a new generalized regression vector and defining the time delay and the rational dynamic parameters in the same vector.The gradient algorithm is used to deal with the identification problem.The effectiveness of this method is illustrated through simulation.
基金This research was supported by the Natural Science Foundation of Fujian Province under Grant Nos. 2015J01012 and 2015J01019.
文摘An improved single image dehazing method based on dark channel prior and wavelet transform is proposed. This pro-posed method employs wavelet transform and guided filter instead of the soft matting procedure to estimate and refine the depth map of haze images. Moreover, a contrast enhancement method based on just noticeable difference (JND) and quadratic function is adopted to enhance the contrast for the dehazed image, since the scene radiance is usual y not as bright as the atmospheric light, and the dehazed image looks dim. The experimental results show that the proposed approach can effectively enhance the haze ima-ge and is wel suitable for implementing on the surveil ance and obstacle detection systems.
基金Supported by the National Natural Science Foundation of China (61863022)the Natural Science Foundation of Gansu Province(20JR10RA329)Scientific Research and Innovation Fund Project of Gansu University of Chinese Medicine in 2019 (2019KCYB-10)。
文摘In this paper, two kinds of chaotic systems are controlled respectively with and without time-delay to eliminate their chaotic behaviors. First of all, according to the first-order approximation method and the stabilization condition of the linear system, one linear feedback controller is structured to control the chaotic system without time-delay, its chaotic behavior is eliminated and stabilized to its equilibrium. After that, based on the first-order approximation method, the Lyapunov stability theorem, and the matrix inequality theory, the other linear feedback controller is structured to control the chaotic system with time-delay and make it stabilized at its equilibrium. Finally, two numerical examples are given to illustrate the correctness and effectiveness of the two linear feedback controllers.