针对回转支承故障特征微弱以及难以提取的特点,提出一种基于概率主成分分析(probabilistic principal component analysis,PPCA)的多领域特征提取方法。该方法从振动信号的时域和时频域中提取出多个能够表征回转支承运行状态的特征向量...针对回转支承故障特征微弱以及难以提取的特点,提出一种基于概率主成分分析(probabilistic principal component analysis,PPCA)的多领域特征提取方法。该方法从振动信号的时域和时频域中提取出多个能够表征回转支承运行状态的特征向量,并将其组成高维特征集。采用PPCA从高维特征集中提取出最能够反映回转支承寿命状态信息的特征量,将其输入粒子群算法优化的支持向量机中进行寿命状态的识别。通过回转支承全寿命实验证明,基于PPCA的特征提取方法优于传统的主成分分析(principal component analysis,PCA),其相应的寿命状态识别精度提高了约8%,并且多领域、多变量的特征更能全面反映回转支承的性能退化趋势。与传统的特征提取方法相比,所提方法能够更全面有效地反映复杂恶劣环境下回转支承的故障信息,因此可以用于回转支承的健康监测领域。展开更多
针对滚动轴承退化性能难以评估、寿命状态难以识别的问题,提出一种基于相空间欧式距离相关性(phase Euclidean distance cross-correlation,PEDCC)指标和多通道卷积长短时记忆网络(multichannel convolutional neural long short term m...针对滚动轴承退化性能难以评估、寿命状态难以识别的问题,提出一种基于相空间欧式距离相关性(phase Euclidean distance cross-correlation,PEDCC)指标和多通道卷积长短时记忆网络(multichannel convolutional neural long short term memory network,MCRNN)的状态识别方法。首先将正常轴承样本信号进行相空间重构,计算样本内重构后相邻数据之间的欧式距离,并将样本内的所有欧氏距离构成距离向量;然后利用互相关函数计算其余样本距离向量与正常样本距离向量之间的相关性,并将其作为轴承退化指标;最后利用所建立的PEDCC退化指标对轴承状态进行划分,将其输入到MCRNN网络中进行退化状态识别。其中MCRNN网络在不同通道中分别采取了不同卷积核,不同激活函数,以便于提取轴承振动信号的多尺度特征。通过轴承全寿命数据集对所提退化指标及网络模型的实用性进行验证,试验证明所提出的方法能更精确的实现轴承的退化状态识别。展开更多
针对滚动轴承退化性能难以评估、寿命状态难以识别的问题,提出一种基于特征噪声能量比(Feature-to-noise energy ratio,FNER)指标及改进深度残差收缩网络(Improved deep residual shrinkage network,IDRSN)的滚动轴承寿命状态识别新方...针对滚动轴承退化性能难以评估、寿命状态难以识别的问题,提出一种基于特征噪声能量比(Feature-to-noise energy ratio,FNER)指标及改进深度残差收缩网络(Improved deep residual shrinkage network,IDRSN)的滚动轴承寿命状态识别新方法。首先,将全寿命轴承信号进行希尔伯特(Hilbert)变换和快速傅里叶变换(Fast fourier transform,FFT)得到包络谱,根据故障特征频率及其倍频计算包络谱幅值的特征能量比(Feature energy ratio,FER);然后,根据自相关函数(Autocorrelation function,AF)得到包络信号的总能量,将故障特征能量和噪声能量的比值作为轴承性能退化指标,之后按照FNER指标曲线划分轴承寿命状态和实现样本标签化;随后,使用标签化样本训练引入了密集连接网络的IDRSN得到轴承寿命状态识别模型。为了提高抗干扰能力,将DropBlock层引入第一个大型卷积内核,在全局平均池化之前引入Dropout技术。最后,运用两个滚动轴承全寿命周期数据集验证FNER指标和IDRSN模型的实用性和有效性,结果表明所提方法能更准确地实现滚动轴承寿命状态识别。展开更多
文摘针对滚动轴承退化性能难以评估、寿命状态难以识别的问题,提出一种基于相空间欧式距离相关性(phase Euclidean distance cross-correlation,PEDCC)指标和多通道卷积长短时记忆网络(multichannel convolutional neural long short term memory network,MCRNN)的状态识别方法。首先将正常轴承样本信号进行相空间重构,计算样本内重构后相邻数据之间的欧式距离,并将样本内的所有欧氏距离构成距离向量;然后利用互相关函数计算其余样本距离向量与正常样本距离向量之间的相关性,并将其作为轴承退化指标;最后利用所建立的PEDCC退化指标对轴承状态进行划分,将其输入到MCRNN网络中进行退化状态识别。其中MCRNN网络在不同通道中分别采取了不同卷积核,不同激活函数,以便于提取轴承振动信号的多尺度特征。通过轴承全寿命数据集对所提退化指标及网络模型的实用性进行验证,试验证明所提出的方法能更精确的实现轴承的退化状态识别。
文摘针对滚动轴承退化性能难以评估、寿命状态难以识别的问题,提出一种基于特征噪声能量比(Feature-to-noise energy ratio,FNER)指标及改进深度残差收缩网络(Improved deep residual shrinkage network,IDRSN)的滚动轴承寿命状态识别新方法。首先,将全寿命轴承信号进行希尔伯特(Hilbert)变换和快速傅里叶变换(Fast fourier transform,FFT)得到包络谱,根据故障特征频率及其倍频计算包络谱幅值的特征能量比(Feature energy ratio,FER);然后,根据自相关函数(Autocorrelation function,AF)得到包络信号的总能量,将故障特征能量和噪声能量的比值作为轴承性能退化指标,之后按照FNER指标曲线划分轴承寿命状态和实现样本标签化;随后,使用标签化样本训练引入了密集连接网络的IDRSN得到轴承寿命状态识别模型。为了提高抗干扰能力,将DropBlock层引入第一个大型卷积内核,在全局平均池化之前引入Dropout技术。最后,运用两个滚动轴承全寿命周期数据集验证FNER指标和IDRSN模型的实用性和有效性,结果表明所提方法能更准确地实现滚动轴承寿命状态识别。