The transition metal ion doped TiO 2 nanoparticles were prepared with hydrothermal method, and the effects of doping different metal ions on the ability of TiO 2 in photocatalyzing degradation of rhodamine B(RB) were ...The transition metal ion doped TiO 2 nanoparticles were prepared with hydrothermal method, and the effects of doping different metal ions on the ability of TiO 2 in photocatalyzing degradation of rhodamine B(RB) were studied. The results showed that the doping of Fe 3+ , Co 2+ , Ni 2+ and Cr 3+ in TiO 2 nanoparticles made the photocatalytic efficiency of the TiO 2 particles reduce and the higher the initial content of Fe 3+ , the lower the ability of TiO 2 in photocatalyzing the degradation of RB. But the doping of Zn 2+ and Cd 2+ , especially Zn 2+ , made the photocatalytic efficiency of the TiO 2 particles enhance, showing a great increase of the rate constant( k ) and the initial reaction rate( r ini ).展开更多
The photocatalytic degradation of Rhodamine B (RhB) was carried out using TiO2 supported on activated carbon (TiO2-AC) under microwave irradiation. Composite catalyst TiO2-AC was prepared and characterized using X...The photocatalytic degradation of Rhodamine B (RhB) was carried out using TiO2 supported on activated carbon (TiO2-AC) under microwave irradiation. Composite catalyst TiO2-AC was prepared and characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET). In the process of microwave-enhanced photocatalysis (MPC), RhB (30 mg/L) was almost completely decoloured in 10 min, and the mineralization efficiency was 96.0% in 20 min. The reaction rate constant of RhB in MPC using TiO2-AC by pseudo first-order reaction kinetics was 4.16 times of that using Degussa P25. Additionally, according to gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) identification, the major intermediates of RhB in MPC included two kinds of N-de-ethylation intermediates (N,N-diethyl-N'-ethyl-rhodamine (DER)), oxalic acid, malonic acid, snccinic acid, and phthalic acid, maleic acid, 3-nitrobenzoic acid, and so on. The degradation of RhB in MPC was mainly attributed to the destruction of the conjugated structure, and then the intermediates transformed to acid molecules which were mineralized to water and carbon dioxide.展开更多
文摘The transition metal ion doped TiO 2 nanoparticles were prepared with hydrothermal method, and the effects of doping different metal ions on the ability of TiO 2 in photocatalyzing degradation of rhodamine B(RB) were studied. The results showed that the doping of Fe 3+ , Co 2+ , Ni 2+ and Cr 3+ in TiO 2 nanoparticles made the photocatalytic efficiency of the TiO 2 particles reduce and the higher the initial content of Fe 3+ , the lower the ability of TiO 2 in photocatalyzing the degradation of RB. But the doping of Zn 2+ and Cd 2+ , especially Zn 2+ , made the photocatalytic efficiency of the TiO 2 particles enhance, showing a great increase of the rate constant( k ) and the initial reaction rate( r ini ).
基金supported by the National Natural Science Foundation of China (No. 20707009)the Jiangsu Province Social Development Foundation (No.BS2007051)+1 种基金the Opening Foundation (WTWER0713) of Engineering Research Center for Water Treatment and Water Remediation of the Ministry of Education of Chinathe State Key Laboratory of Pollution Control and Resource Reuse Opening Foundation (No. PCRRCF07003).
文摘The photocatalytic degradation of Rhodamine B (RhB) was carried out using TiO2 supported on activated carbon (TiO2-AC) under microwave irradiation. Composite catalyst TiO2-AC was prepared and characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET). In the process of microwave-enhanced photocatalysis (MPC), RhB (30 mg/L) was almost completely decoloured in 10 min, and the mineralization efficiency was 96.0% in 20 min. The reaction rate constant of RhB in MPC using TiO2-AC by pseudo first-order reaction kinetics was 4.16 times of that using Degussa P25. Additionally, according to gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) identification, the major intermediates of RhB in MPC included two kinds of N-de-ethylation intermediates (N,N-diethyl-N'-ethyl-rhodamine (DER)), oxalic acid, malonic acid, snccinic acid, and phthalic acid, maleic acid, 3-nitrobenzoic acid, and so on. The degradation of RhB in MPC was mainly attributed to the destruction of the conjugated structure, and then the intermediates transformed to acid molecules which were mineralized to water and carbon dioxide.