The mechanism of tensile deformation in semi-crystalline polymers was studied based on true stress-strain curvesobtained with the aid of a video-controlled tensile set-up. The deformation is affected by both the cryst...The mechanism of tensile deformation in semi-crystalline polymers was studied based on true stress-strain curvesobtained with the aid of a video-controlled tensile set-up. The deformation is affected by both the crystalline and theamorphous phases. However, the relative weights of the two portions change with the deformation stage. At lowdeformations the coupling and coarse slips of the crystalline blocks dominate the mechanical properties, which allows thesystem to maintain a homogeneous strain distribution in the sample. As the stretching increases, at a critical strain the forcegenerated from entangled fluid portions reaches a critical value to destroy the crystallites. The dominant deformationmechanism then changes into a disaggregation - recrystallization process.展开更多
The mechanical properties and deformation mechanisms of boron carbide under a-axis and c-axis uniaxial compression are investigated by ab initio calculations based on the density functional theory.Strong anisotropy is...The mechanical properties and deformation mechanisms of boron carbide under a-axis and c-axis uniaxial compression are investigated by ab initio calculations based on the density functional theory.Strong anisotropy is observed.Under a-axis and c-axis compression,the maximum stresses are 89.0 GPa and 172.2 GPa respectively.Under a-axis compression,the destruction of icosahedra results in the unrecoverable deformation,while under c-axis compression,the main deformation mechanism is the formation of new bonds between the boron atoms in the three-atom chains and the equatorial boron atoms in the neighboring icosahedra.展开更多
文摘The mechanism of tensile deformation in semi-crystalline polymers was studied based on true stress-strain curvesobtained with the aid of a video-controlled tensile set-up. The deformation is affected by both the crystalline and theamorphous phases. However, the relative weights of the two portions change with the deformation stage. At lowdeformations the coupling and coarse slips of the crystalline blocks dominate the mechanical properties, which allows thesystem to maintain a homogeneous strain distribution in the sample. As the stretching increases, at a critical strain the forcegenerated from entangled fluid portions reaches a critical value to destroy the crystallites. The dominant deformationmechanism then changes into a disaggregation - recrystallization process.
基金Project supported by the Science Fund from the Ministry of Science and Technology of China(Grant No.2015DFR50650)the National Natural Science Foundation of China(Grant Nos.51521001,51502220,and 11402183)the Fundamental Research Funds for the Central Universities of China(Grant Nos.WUT:2016-ZY-066 and WUT:2015IA014)
文摘The mechanical properties and deformation mechanisms of boron carbide under a-axis and c-axis uniaxial compression are investigated by ab initio calculations based on the density functional theory.Strong anisotropy is observed.Under a-axis and c-axis compression,the maximum stresses are 89.0 GPa and 172.2 GPa respectively.Under a-axis compression,the destruction of icosahedra results in the unrecoverable deformation,while under c-axis compression,the main deformation mechanism is the formation of new bonds between the boron atoms in the three-atom chains and the equatorial boron atoms in the neighboring icosahedra.