期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO 被引量:13
1
作者 卢俊哲 张铖怡 +1 位作者 刘世鹏 宁德军 《计算机工程与应用》 CSCD 北大核心 2023年第15期318-328,共11页
基于深度学习的智能检测技术逐渐在复杂钢铁生产环境带钢表面缺陷检测过程中使用。为了应对在资源受限的边缘设备中部署高精度模型的挑战,提出一个面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO模型,该模型将可形变卷积网络DCN与原始... 基于深度学习的智能检测技术逐渐在复杂钢铁生产环境带钢表面缺陷检测过程中使用。为了应对在资源受限的边缘设备中部署高精度模型的挑战,提出一个面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO模型,该模型将可形变卷积网络DCN与原始YOLOv5结合,以提高模型对不同尺寸和形状缺陷的灵敏度。为降低计算复杂度,在YOLO模型中引入了深度可分离卷积DSConv和高效通道注意力机制ECA两个轻量级模块,使模型更好地理解输入数据中各个通道之间的关系,在提高模型的检测精度和泛化能力的同时,大幅降低模型的计算量。进一步通过消融实验及横向对比实验,验证了每个创新模块的有效性。通过经典的开源带钢数据集NEU-DET和实际工业带钢数据集分别验证了轻量级DCN-YOLO模型在表面缺陷检测精度和计算复杂度方面的优势。 展开更多
关键词 带钢表面缺陷检测 可形变卷积网络 深度可分离卷积 ECA通道注意力 轻量级YOLOv5 图像预处理
下载PDF
运动场景下改进YOLOv5小目标检测算法 被引量:9
2
作者 朱瑞鑫 杨福兴 《计算机工程与应用》 CSCD 北大核心 2023年第10期196-203,共8页
针对运动场景下由于设备移动、相机散焦,导致采集到的图像模糊,图像质量低,以及目标体积小,使目标检测困难的问题,提出了一种改进YOLOv5x目标实时检测模型。采用可变形卷积网络替换部分原始YOLOv5x中传统的卷积层,增强模型在运动场景中... 针对运动场景下由于设备移动、相机散焦,导致采集到的图像模糊,图像质量低,以及目标体积小,使目标检测困难的问题,提出了一种改进YOLOv5x目标实时检测模型。采用可变形卷积网络替换部分原始YOLOv5x中传统的卷积层,增强模型在运动场景中细粒度特征提取和小目标检测能力;增加SE注意力机制,解决在卷积过程中,因丢失图像全局上下文信息,造成特征损失的问题,提高了模型在图像模糊情况下小目标的检测精度;引入一种新的边界框回归损失函数SIoU Loss,解决了预测框在回归时随意匹配的问题,提高了模型鲁棒性和泛化能力,加快网络的收敛速度。实验结果表明,相比于YOLOv5x模型,将改进后的算法应用在水下移动机器人生物检测中,模型准确率P、召回率R、各类平均精度mAP分别提升了5.90个百分点、5.85个百分点、4.38个百分点,有效增强了小目标检测模型的检测性能。 展开更多
关键词 可变形卷积网络 注意力机制 SIoU Loss YOLOv5x
下载PDF
融合CBAM注意力机制与可变形卷积的车道线检测
3
作者 胡丹丹 张忠婷 牛国臣 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第7期2150-2160,共11页
为满足自动驾驶及汽车高级驾驶辅助系统(ADAS)对车道线检测准确性和实时性的要求,提出一种融合卷积块注意力机制(CBAM)与可变形卷积网络(DCN)的车道线检测方法CADCN。在特征提取模块中嵌入CBAM注意力机制,增强有用特征并抑制无用特征响... 为满足自动驾驶及汽车高级驾驶辅助系统(ADAS)对车道线检测准确性和实时性的要求,提出一种融合卷积块注意力机制(CBAM)与可变形卷积网络(DCN)的车道线检测方法CADCN。在特征提取模块中嵌入CBAM注意力机制,增强有用特征并抑制无用特征响应;引入可变形卷积替换常规卷积,用带偏移的采样学习车道线的几何形变,提高卷积核的建模能力;基于行锚分类思想,对行方向上的位置进行选择和分类分析,预测车道线的位置信息,提高车道线检测模型的实时性。在车道线公开数据集上对所提CADCN方法进行训练及验证,在满足实时性的情况下,CADCN方法在TuSimple数据集上准确率达到96.63%,在CULane数据集上综合评估指标F1平均值达到74.4%,验证了所提方法的有效性。 展开更多
关键词 车道线检测 特征提取 注意力机制 可变形卷积网络 行锚分类
下载PDF
基于可变形卷积网络和YOLOv8的衬砌裂缝检测模型研究
4
作者 孙己龙 刘勇 +3 位作者 路鑫 王志丰 王亚琼 侯小龙 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第8期181-189,共9页
为解决裂缝性状发育随机度高、标注框分辨率低、分布密集易重叠、目标相对小等因素引起的智能检测精度及效率差等问题,基于改进可变形卷积神经网络对YOLOv8骨干网络进行融合,提出1种能够适应隧道复杂场景的裂缝检测模型D-YOLO。模型首... 为解决裂缝性状发育随机度高、标注框分辨率低、分布密集易重叠、目标相对小等因素引起的智能检测精度及效率差等问题,基于改进可变形卷积神经网络对YOLOv8骨干网络进行融合,提出1种能够适应隧道复杂场景的裂缝检测模型D-YOLO。模型首先对第3版可变形卷积网络(DCNv3)的空间聚合权重softmax归一化步骤进行去除以增强网络卷积效率,再利用新DCNv4对骨干网络C2f卷积模块进行融合以提升对网络图像中不同尺度裂缝性状及空间位置变化的细节感知能力,并采用自建裂缝数据集对SSD,Faster-RCNN,YOLOv5和YOLOv84种检测模型进行对比验证。研究结果表明:D-YOLO的F_(1)分数为80.82%,mAP@0.5为86.90%,相较于SSD、Faster-RCNN、YOLOv5和YOLOv8都有所提升;D-YOLO的单张图像检测速度为20.36 ms,相较于各种对比模型分别加快37.06%、65.33%、45.22%和28.39%;同时,D-YOLO对衬砌裂缝图像特征关注范围有所增加。研究结果可为隧道运营期内衬砌安全检测提供新思路。 展开更多
关键词 隧道工程 结构安全 可变形卷积网络 衬砌裂缝 YOLOv8
下载PDF
采空区地裂缝混合域注意力变形卷积网络检测方法 被引量:3
5
作者 程健 叶亮 +1 位作者 郭一楠 王瑞彬 《煤炭学报》 EI CAS CSCD 北大核心 2020年第S02期993-1002,共10页
为了保护生态环境和人员安全,周期性地对煤矿采空区的地裂缝进行检测至关重要。传统的地裂缝人工巡检方法耗时长、效率低下,且无法保障巡检人员安全。航拍视角下的地裂缝与路面、桥梁等裂缝具有相似特征,都呈现出狭长形状。但是,一般煤... 为了保护生态环境和人员安全,周期性地对煤矿采空区的地裂缝进行检测至关重要。传统的地裂缝人工巡检方法耗时长、效率低下,且无法保障巡检人员安全。航拍视角下的地裂缝与路面、桥梁等裂缝具有相似特征,都呈现出狭长形状。但是,一般煤矿采空区地裂缝分布在山区,其背景和噪声更为复杂,导致传统图像处理方法性能不佳。因此,提出一种基于混合域注意力变形卷积网络的地裂缝检测方法。针对地裂缝的狭长特性,引入变形卷积,在特征提取中自适应地确定感受野的范围。混合域注意力机制为特征图中不同通道和不同空间位置的特征信息赋予相应权值,来强化特征图中特定通道和空间位置对地裂缝检测的贡献程度。其中,通道域注意力模块利用通道池化,并经过卷积和激活函数为每个通道生成0~1的权值,强化了特定通道对检测的贡献;空间域注意力模块利用空间池化,并结合变形卷积训练得到每个空间位置的权值,使得模型能更有效地获取空间信息。基于此,给出注意力机制引导的地裂缝检测一般框架,应用无人机搭载高清摄像头采集采空区图像进行地裂缝检测。实验中,所提方法与一阶段检测模型SSD300、SSD512和RetinaNet相比,平均精度分别提升了0.246,0.101和0.034,与多阶段检测模型Faster R-CNN和Cascade R-CNN相比,精准率分别提升了0.300和0.271。自我对比实验中,引入混合域注意力提升了0.195的精准率和0.038的平均精度;较大尺寸的输入图像各方面性能更高。结果表明,所提方法通过结合变形卷积与注意力机制,相比于其它检测方法准确率更高,训练过程更平稳。 展开更多
关键词 混合域注意力 变形卷积网络 地裂缝检测 航拍图像 煤矿采空区
下载PDF
基于可变形卷积时空网络的乘车需求预测模型 被引量:3
6
作者 于瑞云 林福郁 +1 位作者 高宁蔚 李婕 《软件学报》 EI CSCD 北大核心 2021年第12期3839-3851,共13页
随着滴滴、Uber等出租车服务的日益普及,用户的乘车需求预测逐渐成为智慧城市、智慧交通的重要组成部分.准确的预测模型既可以满足用户的出行需求,也可以降低道路车辆空载率,有效地避免资源浪费,并缓解交通压力.车辆服务商可以收集到大... 随着滴滴、Uber等出租车服务的日益普及,用户的乘车需求预测逐渐成为智慧城市、智慧交通的重要组成部分.准确的预测模型既可以满足用户的出行需求,也可以降低道路车辆空载率,有效地避免资源浪费,并缓解交通压力.车辆服务商可以收集到大量GPS数据及用户需求数据,然而,如何合理运用数据进行需求预测,是关键且实用的问题.提出一种结合城市POI的可变形卷积时空网络(DCSN)模型来预测区域乘车需求,模型包括两部分——可变形卷积时空模型与POI需求关联模型:前者即通过DCN与LSTM建模未来需求与时空之间的相关性,后者则通过区域POI差异化指数与需求差异化指数捕捉区域间的相似关系.最后使用全连接网络将两个模型整合起来,进而得出预测结果.使用滴滴出行的大型真实乘车需求数据进行实验,最终实验结果表明,所提出的方法在预测精度上优于现有的预测方法. 展开更多
关键词 城市计算 时空相关性 可变型卷积网络
下载PDF
基于可变形卷积网络的恒星大气物理参数自动测量 被引量:1
7
作者 邓诗宇 刘承志 +8 位作者 康喆 李振伟 刘德龙 张楠 朱成伟 牛炳力 陈龙 丁一高 姜平 《科学技术与工程》 北大核心 2021年第13期5223-5227,共5页
为解决海量恒星光谱数据自动处理问题,更准确地对恒星光谱物理与化学性质的研究,同时更加直观地反映恒星性质参数,通过利用可变形卷积网络(deformable convolutional network,DCN)方法对恒星大气物理参数进行分析,系统地研究了恒星表面... 为解决海量恒星光谱数据自动处理问题,更准确地对恒星光谱物理与化学性质的研究,同时更加直观地反映恒星性质参数,通过利用可变形卷积网络(deformable convolutional network,DCN)方法对恒星大气物理参数进行分析,系统地研究了恒星表面有效温度(T_(eff))、表面重力(logg)、金属丰度([Fe/H])3个物理参数,实验结果对比梯度下降法神经网络(back propagation neural network,BPNN)、人工神经网络(artificial neural network,ANN)、径向基神经网络(radial basis function neural network,RBFNN),评价标准为平均绝对误差(mean absolute error,MAE)、均值误差(mean error,ME)。基于SDSS-DR9、LAMOST-DR3恒星光谱数据得到T_(eff)、logg、[Fe/H]的DCN-MAE分别为97.2136 K、0.2812 dex、0.1252 dex,DCN-ME分别为106.5963 K、0.3856 dex、0.1753 dex。实验结果显示DCN效果优于BPCNN、ANN、RBFNN,为进一步分析与反映恒星真实情况提供参考。 展开更多
关键词 恒星光谱 大气参数 可变形卷积网络 平均绝对误差 均值误差
下载PDF
基于卷积神经网络的火灾识别算法 被引量:9
8
作者 李杰 邱选兵 +3 位作者 张恩华 李宁 魏永卜 李传亮 《计算机应用》 CSCD 北大核心 2020年第S02期173-177,共5页
针对传统图像处理和浅层机器学习的火灾识别中准确率不太高、特征难以提取等问题,提出一种基于卷积神经网络的火灾识别算法。首先将图片数据集转化为快速HSI色彩格式,增加图片视觉特性,便于深度学习提取火焰特征;然后采用Inception_Resn... 针对传统图像处理和浅层机器学习的火灾识别中准确率不太高、特征难以提取等问题,提出一种基于卷积神经网络的火灾识别算法。首先将图片数据集转化为快速HSI色彩格式,增加图片视觉特性,便于深度学习提取火焰特征;然后采用Inception_Resnet_V2卷积神经网络结合可变形卷积网络(DCN)对数据集进行训练提取特征,提高卷积神经网络对目标几何变化的适应和建模能力;最后使用支持向量机(SVM)分批次训练提取到的特征来进行分类。实验结果表明,与传统图像处理和其他深度学习识别算法相比,所提算法准确率高、泛化能力强、漏报率低,对测试集识别准确率达99.04%,取得很好的火灾识别效果。 展开更多
关键词 可变形卷积网络 HSI色彩模型 支持向量机 卷积神经网络 深度学习
下载PDF
改进的Libra区域卷积神经网络的脑动脉狭窄影像学检测算法 被引量:1
9
作者 刘汉卿 康晓东 +4 位作者 张福青 赵秀圆 杨靖怡 王笑天 李梦凡 《计算机应用》 CSCD 北大核心 2022年第9期2909-2916,共8页
针对断层面上血管的多形性和检测过程中出现的采样不均衡的问题,提出一种改进的Libra区域卷积神经网络(R-CNN)的脑动脉狭窄影像学检测算法,用于检测计算机断层扫描血管造影(CTA)图像的颈内动脉和椎动脉狭窄。首先,在目标检测网络LibraR-... 针对断层面上血管的多形性和检测过程中出现的采样不均衡的问题,提出一种改进的Libra区域卷积神经网络(R-CNN)的脑动脉狭窄影像学检测算法,用于检测计算机断层扫描血管造影(CTA)图像的颈内动脉和椎动脉狭窄。首先,在目标检测网络LibraR-CNN中以ResNet50为骨干网络,并分别在骨干网络的3、4、5阶段引入可变卷积网络(DCN),通过学习偏移量提取血管在不同断层面的形态特征;然后,将从骨干网络中提取的特征图输入至引入非局部神经网络(Non-localNN)的平衡特征金字塔(BFP)中进行更深度的特征融合;最后,将融合后的特征图输入至级联检测器,并通过提高交并比(IoU)阈值优化最终检测结果。实验结果表明,改进的LibraR-CNN检测算法相比Libra R-CNN算法,在脑动脉CTA数据集中平均准确率(AP)、AP_(50)、AP_(75)和AP_(S)分别提升了4.3、1.3、6.9和4.0个百分点;在公开的结肠息肉CT数据集中,AP、AP_(50)、AP_(75)和AP_(S)分别提升了6.6、3.6、13.0和6.4个百分点。通过在LibraR-CNN的骨干网络中加入DCN、Non-localNN和级联检测器,进一步融合特征从而学习脑动脉血管结构的语义信息,使得狭窄区域检测结果更精确,且改进算法在不同的检测任务中具有泛化能力。 展开更多
关键词 Libra区域卷积神经网络 可变卷积网络 非局部神经网络 级联检测器 脑动脉狭窄
下载PDF
融合可变形卷积网络的细粒度图像识别研究 被引量:1
10
作者 吴忠粱 《电脑知识与技术》 2021年第17期193-195,共3页
针对细粒度图像识别领域中识别率不高、难以定位到图像中具有表征性的局部区域的问题,提出一种基于多区域融合的可变形卷积网络算法,该算法采用新型的卷积计算方式,根据越靠近边缘的部位越发包含更多图像上下文信息的原理,对图像给定多... 针对细粒度图像识别领域中识别率不高、难以定位到图像中具有表征性的局部区域的问题,提出一种基于多区域融合的可变形卷积网络算法,该算法采用新型的卷积计算方式,根据越靠近边缘的部位越发包含更多图像上下文信息的原理,对图像给定多个中心并划分权重区域。在主流数据集上的实验结果表明,提出的基于多区域的可变形卷积网络结构在细粒度图像识别上的表现相比其他主流算法都有了一定的提升,并且相比于原始的可变形卷积网络和v2版本的可变形卷积模型也有了性能上的优化。 展开更多
关键词 细粒度图像识别 局部表征性 多区域可变形卷积网络 图像上下文信息 区域划分
下载PDF
基于可变形卷积神经网络的数字仪表识别方法 被引量:10
11
作者 郭兰英 韩睿之 程鑫 《计算机科学》 CSCD 北大核心 2020年第10期187-193,共7页
目前,对于数显仪表的识别,多采用传统的图像处理及机器学习等方法,在复杂多变的应用场景中,其对字符、数字的识别准确率低,难以满足实时应用的要求。针对以上问题,将传统图像处理技术与深度学习方法相结合,提出了一种基于可变形卷积神... 目前,对于数显仪表的识别,多采用传统的图像处理及机器学习等方法,在复杂多变的应用场景中,其对字符、数字的识别准确率低,难以满足实时应用的要求。针对以上问题,将传统图像处理技术与深度学习方法相结合,提出了一种基于可变形卷积神经网络的数显仪表示数分割与识别方法。该方法包含图像预处理、字符分割与识别等步骤。首先,使用GrayWorld算法对待识别图像进行亮度均衡,并通过彩色分割提取屏幕区域;其次,对图像进行形态学操作,以便使用投影直方图法完成字符与对应小数点的整体分割;最后,设计并训练了一种可变形卷积神经网络对字符进行识别,优化了卷积神经网络感受野几何结构固定的内在问题。实验结果表明,加入可变形卷积有效提高了图像的识别准确率和网络的收敛速度;该方法的整体识别准确率达到99.45%,检测速度为10FPS,能够满足实际应用需求。 展开更多
关键词 图像处理 字符识别 可变形卷积神经网络 投影直方图
下载PDF
复杂背景下SAR图像近岸舰船目标检测 被引量:8
12
作者 李永刚 朱卫纲 +2 位作者 黄琼男 李云涛 何永华 《系统工程与电子技术》 EI CSCD 北大核心 2022年第10期3096-3103,共8页
针对合成孔径雷达(synthetic aperture radar,SAR)图像近岸舰船目标易受背景杂波的影响,造成SAR图像近岸舰船目标检测检测率低、虚警率和漏检率高的问题,提出一种适用于复杂背景下SAR图像近岸舰船目标检测的DFF-Yolov5(deformable featu... 针对合成孔径雷达(synthetic aperture radar,SAR)图像近岸舰船目标易受背景杂波的影响,造成SAR图像近岸舰船目标检测检测率低、虚警率和漏检率高的问题,提出一种适用于复杂背景下SAR图像近岸舰船目标检测的DFF-Yolov5(deformable feature fusion you only look once 5)算法。构建了一个专门用于SAR图像复杂背景近岸舰船目标检测的数据集,基于Yolov5目标检测算法,在特征提取网络中进行特征细化和多特征融合两个方面的改进。在特征提取网络中利用可变形卷积神经网络改变卷积对目标采样点的位置,增强目标的特征提取能力,提高复杂背景下SAR图像舰船目标的检测率。在多特征融合网络结构中采用级联和并列金字塔,进行不同层级的特征融合。同时,使用空洞卷积扩大特征提取的视觉感受野,增强网络对复杂背景近岸多尺度舰船目标的适应性,降低复杂背景下SAR图像舰船目标检测的虚警率。通过在构建的复杂背景近岸舰船检测数据集上的测试实验,结果表明:DFF-Yolov5的平均准确率为85.99%,相比于原始的Yolov5,所提方法平均准确率提高了5.09%,精度提高了1.4%。 展开更多
关键词 合成孔径雷达 目标检测 近岸舰船目标 多特征融合 可变形卷积神经网络
下载PDF
C-3D可变形卷积神经网络模型的肺结节检测 被引量:7
13
作者 阮宏洋 陈志澜 +1 位作者 程英升 杨凯 《激光与光电子学进展》 CSCD 北大核心 2020年第4期144-154,共11页
在C-3D卷积神经网络模型基础上,提出了一种三维可变形卷积神经网络以实现肺结节的检测。在模型的主体结构上,采用了三维可变形卷积和三维可变形池化的操作,解决了传统的方块卷积与池化在应对不规则的肺结节时,无法高效率地收集到肺结节... 在C-3D卷积神经网络模型基础上,提出了一种三维可变形卷积神经网络以实现肺结节的检测。在模型的主体结构上,采用了三维可变形卷积和三维可变形池化的操作,解决了传统的方块卷积与池化在应对不规则的肺结节时,无法高效率地收集到肺结节像素点的问题。在模型的输入上,通过调整三维卷积神经网络的输入,实现了卷积神经网络对样本图片的32×32×32像素逐步扫描和识别,在扫描识别的同时进行定位,解决了肺结节定位问题。在模型的输出上,借鉴了全卷积神经网络的思想,将C-3D网络的第一层全连接层改为卷积层,解决训练时内存会溢出的问题。在模型参数上,提出了三种不同学习率和三种优化函数进行精确的实验对比,绘制了不同学习率和优化函数的参数对比图,根据实验结果找到最优的卷积神经网络模型学习率和优化函数参数。对实验结果的分析表明,该方法在受试者工作曲线下面积、分类准确率、召回率、F1值均取得了显著的提高。 展开更多
关键词 图像处理 可变形卷积神经网络 肺结节 池化层
原文传递
以改进机器视觉算法构建纸张图像识别模型
14
作者 牟海荣 陆蕊 《造纸科学与技术》 2024年第2期60-62,81,共4页
为保障纸张生产加工质量,精准获取与识别纸张缺陷,以改进机器视觉算法构建了纸张图像识别模型。首先以由线阵CCD相机与双光源等构成的图像采集装备采集纸张缺陷图像,其次以改进机器视觉方法对纸张缺陷图像进行预处理分析,然后将预处理... 为保障纸张生产加工质量,精准获取与识别纸张缺陷,以改进机器视觉算法构建了纸张图像识别模型。首先以由线阵CCD相机与双光源等构成的图像采集装备采集纸张缺陷图像,其次以改进机器视觉方法对纸张缺陷图像进行预处理分析,然后将预处理后图案以可变形卷积神经网络输入进行训练,以此检测识别纸张所存在的缺陷类型。实验测试结果表明,基于改进机器视觉算法的纸张图像识别模型可高效且精准识别缺陷,准确率高达98.4%,拥有较高识别度,可广泛推广以投入实际运用。 展开更多
关键词 机器视觉 可变形卷积神经网络 纸张缺陷 图像识别 模型构建
下载PDF
基于YOLOX-S的车窗状态识别算法 被引量:1
15
作者 黄键 徐伟峰 +2 位作者 苏攀 王洪涛 李真真 《吉林大学学报(理学版)》 CAS 北大核心 2023年第4期875-882,共8页
通过对YOLOX-S模型引入可变形卷积神经网络和焦点损失函数(Focal loss),解决原YOLOX-S模型车窗识别准确率较低的问题.首先,通过在YO LOX-S模型的主干特征提取网络中引入可变形卷积神经网络,对卷积核中的各采样点引入偏移量,以便在原始... 通过对YOLOX-S模型引入可变形卷积神经网络和焦点损失函数(Focal loss),解决原YOLOX-S模型车窗识别准确率较低的问题.首先,通过在YO LOX-S模型的主干特征提取网络中引入可变形卷积神经网络,对卷积核中的各采样点引入偏移量,以便在原始图像中提取到更具有表征的信息,从而提高车窗识别的精准度;其次,使用Focal loss替代原模型中的二元交叉熵损失函数,Focal loss能缓解正负样本不平衡对训练的影响,其在训练过程中更关注难样本,从而提高了模型对车窗目标的识别性能;最后,为验证改进算法的性能,实验收集并标注15627张图片进行训练和验证.实验结果表明,改进后的车窗识别算法的平均目标精度提高了3.88%. 展开更多
关键词 车窗识别 YOLOX-S模型 可变形卷积神经网络 焦点损失
下载PDF
基于可变形卷积神经网络的肺结节假阳性识别 被引量:1
16
作者 王梦南 赵涓涓 +1 位作者 肖宁 郝瑞 《计算机工程与设计》 北大核心 2022年第6期1732-1739,共8页
针对肺结节检测中假阳性高的问题,提出一种基于可变形卷积神经网络的肺结节假阳性降低框架。使用多尺度候选结节作为输入,使用可变形卷积神经网络提取候选结节的多层次上下文特征,渐进融合不同输入顺序的候选结节特征信息。通过端到端... 针对肺结节检测中假阳性高的问题,提出一种基于可变形卷积神经网络的肺结节假阳性降低框架。使用多尺度候选结节作为输入,使用可变形卷积神经网络提取候选结节的多层次上下文特征,渐进融合不同输入顺序的候选结节特征信息。通过端到端的学习方式集成多流渐进特征信息得到最终的分类结果。在LUNA16数据集和合作医院临床数据集上,所提框架CPM评分优于已有方法,检测出的结节数量最多,假阳性结节数量最少,有很好的泛化能力,能有效降低结节假阳性,适用于真实的临床数据。 展开更多
关键词 渐进特征提取 可变形卷积神经网络 多流特征集成 假阳性降低 临床数据
下载PDF
基于可变形非局部三维卷积网络的视频超分辨率重建算法 被引量:1
17
作者 蔡非凡 万旺根 《工业控制计算机》 2022年第3期54-56,共3页
视频超分辨率(VSR)技术的目标是找出从相应的低分辨率(LR)视频序列重建高分辨率(HR)视频的最佳重建方案。提出了一种新颖的可变形非局部三维卷积网络(DNL-3DCNN)能有效地利用时空信息和参考帧与相邻帧之间的全局相关性。具体来说,非局... 视频超分辨率(VSR)技术的目标是找出从相应的低分辨率(LR)视频序列重建高分辨率(HR)视频的最佳重建方案。提出了一种新颖的可变形非局部三维卷积网络(DNL-3DCNN)能有效地利用时空信息和参考帧与相邻帧之间的全局相关性。具体来说,非局部结构(Non-Local)同时增强了输入帧的时空信息中所需要的精细细节。此外,残差可变形三维卷积(R3D)获得了卓越的时空建模能力和运动感知建模的灵活性。此外,残差密集连接网络(RRDB)再进行重建处理,以充分利用输入到重建模块的层级特征。在基准数据集上进行的定量和定性实验表明,与现有的较为先进的VSR方法相比,所提方法在PSNR指标上提高了1.19db,在SSIM指标上提高了约5.95%。消融性实验确认提出的三个模块均带来了一定的性能增益,实验结果验证了所提算法在视频超分辨率时空信息重建领域的有效性。 展开更多
关键词 视频超分辨率 深度学习 可变形三维卷积网络 非局部神经网络 残差密集连接网络
下载PDF
基于增强可逆性插值滤波器设计的编码方法
18
作者 张秋阳 黄晓峰 殷海兵 《杭州电子科技大学学报(自然科学版)》 2022年第2期14-20,55,共8页
可逆性分像素插值滤波器可以解决插值没有真实样本的难点,但是,存在传统卷积核形状固定、正则项损失函数冲突等不足。为此,提出一种增强的可逆性插值滤波器设计优化方案。首先,引入可变形卷积层,改变卷积核的形状和不同位置的像素参与... 可逆性分像素插值滤波器可以解决插值没有真实样本的难点,但是,存在传统卷积核形状固定、正则项损失函数冲突等不足。为此,提出一种增强的可逆性插值滤波器设计优化方案。首先,引入可变形卷积层,改变卷积核的形状和不同位置的像素参与卷积的权重,增大了感受野,提高了网络的适应性;然后,在正则项设计中,引入生成对抗网络,提升了网络的收敛能力;最后,使用基于运动模糊方法生成的训练样本来替代原本的基于离散余弦变换生成的样本,达到更逼近真实运动的效果。实验结果表明,和H.265相比,改进方案的BD-rate指标提升了2.56%。 展开更多
关键词 视频编码 帧间预测 分像素插值 可变形卷积神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部