The metaheuristics algorithm is increasingly important in solving many kinds of real-life optimization problems but the implementation involves programming difficulties. As a result, many researchers have relied on so...The metaheuristics algorithm is increasingly important in solving many kinds of real-life optimization problems but the implementation involves programming difficulties. As a result, many researchers have relied on software framework to accelerate the development life cycle. However, the available software frameworks were mostly designed for rapid development rather than flexible programming. Therefore, in order to extend software functions, this approach involves modifying software libraries which requires the programmers to have in-depth understanding about the internal working structure of software and the programming language. Besides, it has restricted programmers for implementing flexible user-defined low-level hybridization. This paper presents the concepts and formal definition of metaheuristics and its low-level hybridization. In addition, the weaknesses of current programming approaches supported by available software frameworks for metaheuristics are discussed. Responding to the deficiencies, this paper introduces a rapid and flexible software framework with scripting language environment. This approach is more flexible for programmers to create a variety of user-defined low-level hybridization rather than bounded with built-in metaheuristics strategy in software libraries.展开更多
文摘The metaheuristics algorithm is increasingly important in solving many kinds of real-life optimization problems but the implementation involves programming difficulties. As a result, many researchers have relied on software framework to accelerate the development life cycle. However, the available software frameworks were mostly designed for rapid development rather than flexible programming. Therefore, in order to extend software functions, this approach involves modifying software libraries which requires the programmers to have in-depth understanding about the internal working structure of software and the programming language. Besides, it has restricted programmers for implementing flexible user-defined low-level hybridization. This paper presents the concepts and formal definition of metaheuristics and its low-level hybridization. In addition, the weaknesses of current programming approaches supported by available software frameworks for metaheuristics are discussed. Responding to the deficiencies, this paper introduces a rapid and flexible software framework with scripting language environment. This approach is more flexible for programmers to create a variety of user-defined low-level hybridization rather than bounded with built-in metaheuristics strategy in software libraries.