Oxidative burst is one of the earliest responses in plant resistance to pathogen attack. Studies indicate that the oxidative burst is composed of two phases. The first burst is weak and biologically nonspecific, where...Oxidative burst is one of the earliest responses in plant resistance to pathogen attack. Studies indicate that the oxidative burst is composed of two phases. The first burst is weak and biologically nonspecific, whereas the phase Ⅱ burst is massive and produced only as an incompatible interaction. The rapid transient production of active oxygen species plays an important role in plant defense strategy against diseases. It involves: 1) antimicrobial activity, 2) substrate for oxidative cross_linking of cell wall, 3) triggering factor of hypersensitive response, 4) mobile signal inducing local and systemic acquired resistance by itself or its derivatives, 5) induction of phytoalexin accumulation, and 6) regulation of gene transcription. Emerging data indicate that the oxidative burst initiates from the activation of NADPH oxidase system resembling that of animal phagocytes. The generation of active oxygen species by a pH_dependent peroxidase is also present in some plants. Further, there is a complete system in plants to regulate the accumulation and scavenging of active oxygen species to protect plants from secondary infection, and at the same time to avoid the oxidative stress.展开更多
ABSTRACT Plant hormones have been extensively studied for their importance in innate immunity particularly in the dicotyledonous model plant Arabidopsis thaliana. However, only in the last decade, plant hormones were ...ABSTRACT Plant hormones have been extensively studied for their importance in innate immunity particularly in the dicotyledonous model plant Arabidopsis thaliana. However, only in the last decade, plant hormones were demonstrated to play conserved and divergent roles in fine-tuning immune responses in rice (Oryza sativa L.), a monocotyledonous model crop plant. Emerging evidence showed that salicylic acid (SA) plays a role in rice basal defense but is differentially required by rice pattern recognition receptor (PRR) and resistance (R) protein-mediated immunity, and its function is likely dependent on the signaling pathway rather than the change of endogenous levels. Jasmonate (JA) plays an important role in rice basal defense against bacterial and fungal infection and may be involved in the SA-mediated resistance. Ethylene (ET) can act as a positive or negative modulator of disease resistance, depending on the pathogen type and environmental conditions. Brassinosteroid (BR) signaling and abscisic acid (ABA) either promote or defend against infection of pathogens with distinct infection/colonization strategies. Auxin and gibberellin (GA) are generally thought of as negative regulators of innate immunity in rice. Moreover, GA interacts antagonistically with JA signaling in rice development and immunity through the DELLA protein as a master regulator of the two hormone pathways. In this review, we summarize the roles of plant hormones in rice immunity and discuss their interplay/crosstalk mechanisms and the complex regulatory network of plant hormone pathways in fine-tuning rice immunity and growth.展开更多
In order to assess the functional roles of heat stress-induced class B-heat shock factors in Arabidopsis, we investigated T-DNA knockout mutants of AtHsfB1 and AtHsfB2b. Micorarray analysis of double knockout hsfB1/hs...In order to assess the functional roles of heat stress-induced class B-heat shock factors in Arabidopsis, we investigated T-DNA knockout mutants of AtHsfB1 and AtHsfB2b. Micorarray analysis of double knockout hsfB1/hsfB2b plants revealed as strong an up-regulation of the basal mRNA-levels of the defensin genes Pdfl.2a/b in mutant plants. The Pdfexpression was further enhanced by jasmonic acid treatment or infection with the necrotrophic fungus Alternaria brassicicola. The single mutant hsfB2b and the double mutant hsfB 1/B2b were significantly improved in disease resistance after A. brassicicola infection. There was no indication for a direct interaction of Hsf with the promoter of Pdf1.2, which is devoid of perfect HSE consensus Hsf-binding sequences. However, changes in the formation of late HsfA2-dependent HSE binding were detected in hsfB1/B2b plants. This suggests that HsfB1/B2b may interact with class A-Hsf in regulating the shut-off of the heat shock response. The identification of Pdfgenes as targets of Hsf-dependent negative regulation is the first evidence for an interconnection of Hsf in the regulation of biotic and abiotic responses.展开更多
There is increasing evidence that pathogens do not only elicit direct defense responses, but also cause pronounced changes in primary carbohydrate metabolism. Cell-wall-bound invertases belong to the key regulators of...There is increasing evidence that pathogens do not only elicit direct defense responses, but also cause pronounced changes in primary carbohydrate metabolism. Cell-wall-bound invertases belong to the key regulators of carbohydrate partitioning and source-sink relations. Whereas studies have focused so far only on the transcriptional induction of invertase genes in response to pathogen infection, the role of post-translational regulation of invertase activity has been neglected and was the focus of the present study. Expression analyses revealed that the high mRNA level of one out of three proteinaceous invertase inhibitors in source leaves of Arabidopsis thaliana is strongly repressed upon infection by a virulent strain of Pseudomonas syringae pv. tomato DC3000. This repression is paralleled by a decrease in invertase inhibitor activity. The physiological role of this regulatory mechanism is revealed by the finding that in situ invertase activity was detectable only upon infection by P. syringae. In contrast, a high invertase activity could be measured in vitro in crude and cell wall extracts prepared from both infected and non-infected leaves. The discrepancy between the in situ and in vitro invertase activity of control leaves and the high in situ invertase activity in infected leaves can be explained by the pathogen-dependent repression of invertase inhibitor expression and a concomitant reduction in invertase inhibitor activity. The functional importance of the release of invertase from post-translational inhibition for the defense response was substantiated by the application of the competitive chemical invertase inhibitor acarbose. Posttranslational inhibition of extracellular invertase activity by infiltration of acarbose in leaves was shown to increase the susceptibility to P. syringae. The impact of invertase inhibition on spatial and temporal dynamics of the repression of photosynthesis and promotion of bacterial growth during pathogen infection supports a role for extracellular invertase in plant defen展开更多
Riboflavin (vitamin B2) participates in a variety of redox processes that affect plant defense responses. Previously we have shown that riboflavin induces pathogen resistance in the absence of hypersensitive cell de...Riboflavin (vitamin B2) participates in a variety of redox processes that affect plant defense responses. Previously we have shown that riboflavin induces pathogen resistance in the absence of hypersensitive cell death (HCD) in plants. Herein, we report that riboflavin induces priming of defense responses in Arabidopsis thaliana toward infection by virulent Pseudomonas syringae pv. tomato DC3000 (Pst). Induced resistance was mechanistically connected with the expression of defense response genes and cellular defense events, including H202 burst, HCD, and callose deposition in the plant. Riboflavin treatment and inoculation of plants with Pst were neither active but both synergized to induce defense responses. The priming process needed NPRI (essential regulator of systemic acquired resistance) and maintenance of H202 burst but was independent of salicylic acid, jasmonic acid, ethylene, and abscisic acid. Our results suggest that the role of riboflavin in priming defenses is subject to a signaling process distinct from the known pathways of hormone signal transduction.展开更多
Plasma membrane (PM) H+-ATPases are the primary pumps responsible for the establishment of cellular mem- brane potential in plants. In addition to regulating basic aspects of plant cell function, these enzymes cont...Plasma membrane (PM) H+-ATPases are the primary pumps responsible for the establishment of cellular mem- brane potential in plants. In addition to regulating basic aspects of plant cell function, these enzymes contribute to sig- naling events in response to diverse environmental stimuli. Here, we focus on the roles of the PM H+-ATPase during plant- pathogen interactions. PM H+-ATPases are dynamically regulated during plant immune responses and recent quantitative proteomics studies suggest complex spatial and temporal modulation of PM H+-ATPase activity during early pathogen recognition events. Additional data indicate that PM H+-ATPases cooperate with the plant immune signaling protein RIN4 to regulate stomatal apertures during bacterial invasion of leaf tissue. Furthermore, pathogens have evolved mechanisms to manipulate PM H+-ATPase activity during infection. Thus, these ubiquitous plant enzymes contribute to plant immune responses and are targeted by pathogens to increase plant susceptibility.展开更多
Heterotrimeric GTP-binding proteins, which consist of Gα, Gβ, and Gγ subunits, play important roles in transducing extracellular signals perceived by cell surface receptors into intracellular physiological response...Heterotrimeric GTP-binding proteins, which consist of Gα, Gβ, and Gγ subunits, play important roles in transducing extracellular signals perceived by cell surface receptors into intracellular physiological responses. In addition to a single prototypical Gα protein (GPA1), Arabidopsis has three unique Gα-Iike proteins, known as XLG1, XLG2, and XLG3, that have been found to be localized in nuclei, although their functions and mode of action remain largely unknown. Through a transcriptomic analysis, we found that XLG2 and XLG3 were rapidly induced by infection with the bacterial pathogen Pseudomonas syringae, whereas the XLG1 transcript level was not affected by pathogen infection. A reverse genetic screen revealed that the xlg2 loss-of-function mutation causes enhanced susceptibility to P. syringae. Transcriptome profiling revealed that the xlg2 mutation affects pathogen-triggered induction of a small set of defense-related genes. However, xlgl and xlg3 mutants showed no difference from wild-type plants in resistance to P. syringae, In addition, the xlg2 xlg3 double mutant and the xlgl xlg2 xlg3 triple mutant were not significantly different from the xlg2 single mutant in the disease resistance phenotype, suggesting that the roles of XLG1 and XLG3 in defense, if any, are less significant than for XLG2. Constitutive overexpression of XLG2 leads to the accumulation of abnormal transcripts from multiple defense-related genes. Through co-immunoprecipitation assays, XLG2 was found to interact with AGB1, the sole Gβ subunit in Arabidopsis, which has previously been found to be a positive regulator in resistance to necrotrophic fungal pathogens. However, no significant difference was found between three xlg single mutants, the xlg2 xlg3 double mutant, the xlgtriple mutant, and wild-type plants in resistance to the necrotrophic fungal pathogens Botrytis cinerea or Alternaria brassicicola. These results suggest that XLG2 and AGB1 are components of a G-protein complex different from the prototypical heterotrimeric 展开更多
Calcium acts as a second messenger for signaling to a variety of stimuli including MAMPs (Microbe-Associated Molecular Patterns), such as fig22 and elf18 that are derived from bacterial flagellin and elongation fact...Calcium acts as a second messenger for signaling to a variety of stimuli including MAMPs (Microbe-Associated Molecular Patterns), such as fig22 and elf18 that are derived from bacterial flagellin and elongation factor Tu, respectively. Here, Arabidopsis thaliana mutants with changed calcium elevation (cce) in response to fig22 treatment were isolated and characterized. Besides novel mutant alleles of the fig22 receptor, FLS2 (Flagellin-Sensitive 2), and the receptor-associated kinase, BAK1 (Brassinosteroid receptor 1-Associated Kinase 1), the new cce mutants can be categorized into two main groups--those with a reduced or an enhanced calcium elevation. Moreover, cce mutants from both groups show differ- ential phenotypes to different sets of MAMPs. Thus, these mutants will facilitate the discovery of novel components in early MAMP signaling and bridge the gaps in current knowledge of calcium signaling during plant-microbe interactions. Last but not least, the screening method is optimized for speed (covering 384 plants in 3 or 10 h) and can be adapted to genetically dissect any other stimuli that induce a change in calcium levels.展开更多
文摘Oxidative burst is one of the earliest responses in plant resistance to pathogen attack. Studies indicate that the oxidative burst is composed of two phases. The first burst is weak and biologically nonspecific, whereas the phase Ⅱ burst is massive and produced only as an incompatible interaction. The rapid transient production of active oxygen species plays an important role in plant defense strategy against diseases. It involves: 1) antimicrobial activity, 2) substrate for oxidative cross_linking of cell wall, 3) triggering factor of hypersensitive response, 4) mobile signal inducing local and systemic acquired resistance by itself or its derivatives, 5) induction of phytoalexin accumulation, and 6) regulation of gene transcription. Emerging data indicate that the oxidative burst initiates from the activation of NADPH oxidase system resembling that of animal phagocytes. The generation of active oxygen species by a pH_dependent peroxidase is also present in some plants. Further, there is a complete system in plants to regulate the accumulation and scavenging of active oxygen species to protect plants from secondary infection, and at the same time to avoid the oxidative stress.
基金This work was supported by National Key Basic Research and Development Program Grant 2011 CB100700 (to Z.H.) Natural Science Foundation of China Grants 91117018 and 30730064 (to Z.H.)and US Department of Agriculture National Research Initiative Grant 2003-35319-17873 (to Y.Y.). No conflict of interest declared.
文摘ABSTRACT Plant hormones have been extensively studied for their importance in innate immunity particularly in the dicotyledonous model plant Arabidopsis thaliana. However, only in the last decade, plant hormones were demonstrated to play conserved and divergent roles in fine-tuning immune responses in rice (Oryza sativa L.), a monocotyledonous model crop plant. Emerging evidence showed that salicylic acid (SA) plays a role in rice basal defense but is differentially required by rice pattern recognition receptor (PRR) and resistance (R) protein-mediated immunity, and its function is likely dependent on the signaling pathway rather than the change of endogenous levels. Jasmonate (JA) plays an important role in rice basal defense against bacterial and fungal infection and may be involved in the SA-mediated resistance. Ethylene (ET) can act as a positive or negative modulator of disease resistance, depending on the pathogen type and environmental conditions. Brassinosteroid (BR) signaling and abscisic acid (ABA) either promote or defend against infection of pathogens with distinct infection/colonization strategies. Auxin and gibberellin (GA) are generally thought of as negative regulators of innate immunity in rice. Moreover, GA interacts antagonistically with JA signaling in rice development and immunity through the DELLA protein as a master regulator of the two hormone pathways. In this review, we summarize the roles of plant hormones in rice immunity and discuss their interplay/crosstalk mechanisms and the complex regulatory network of plant hormone pathways in fine-tuning rice immunity and growth.
文摘In order to assess the functional roles of heat stress-induced class B-heat shock factors in Arabidopsis, we investigated T-DNA knockout mutants of AtHsfB1 and AtHsfB2b. Micorarray analysis of double knockout hsfB1/hsfB2b plants revealed as strong an up-regulation of the basal mRNA-levels of the defensin genes Pdfl.2a/b in mutant plants. The Pdfexpression was further enhanced by jasmonic acid treatment or infection with the necrotrophic fungus Alternaria brassicicola. The single mutant hsfB2b and the double mutant hsfB 1/B2b were significantly improved in disease resistance after A. brassicicola infection. There was no indication for a direct interaction of Hsf with the promoter of Pdf1.2, which is devoid of perfect HSE consensus Hsf-binding sequences. However, changes in the formation of late HsfA2-dependent HSE binding were detected in hsfB1/B2b plants. This suggests that HsfB1/B2b may interact with class A-Hsf in regulating the shut-off of the heat shock response. The identification of Pdfgenes as targets of Hsf-dependent negative regulation is the first evidence for an interconnection of Hsf in the regulation of biotic and abiotic responses.
文摘There is increasing evidence that pathogens do not only elicit direct defense responses, but also cause pronounced changes in primary carbohydrate metabolism. Cell-wall-bound invertases belong to the key regulators of carbohydrate partitioning and source-sink relations. Whereas studies have focused so far only on the transcriptional induction of invertase genes in response to pathogen infection, the role of post-translational regulation of invertase activity has been neglected and was the focus of the present study. Expression analyses revealed that the high mRNA level of one out of three proteinaceous invertase inhibitors in source leaves of Arabidopsis thaliana is strongly repressed upon infection by a virulent strain of Pseudomonas syringae pv. tomato DC3000. This repression is paralleled by a decrease in invertase inhibitor activity. The physiological role of this regulatory mechanism is revealed by the finding that in situ invertase activity was detectable only upon infection by P. syringae. In contrast, a high invertase activity could be measured in vitro in crude and cell wall extracts prepared from both infected and non-infected leaves. The discrepancy between the in situ and in vitro invertase activity of control leaves and the high in situ invertase activity in infected leaves can be explained by the pathogen-dependent repression of invertase inhibitor expression and a concomitant reduction in invertase inhibitor activity. The functional importance of the release of invertase from post-translational inhibition for the defense response was substantiated by the application of the competitive chemical invertase inhibitor acarbose. Posttranslational inhibition of extracellular invertase activity by infiltration of acarbose in leaves was shown to increase the susceptibility to P. syringae. The impact of invertase inhibition on spatial and temporal dynamics of the repression of photosynthesis and promotion of bacterial growth during pathogen infection supports a role for extracellular invertase in plant defen
基金Supported by the National Science Fund for Distinguished Young Scholars (30525088)the State Key Basic Research and Development Plan of China (2006CB101902)+1 种基金the National Natural Science Foundation of China (30771441)the Hi-Tech Research and Development Program of China (2006AA10Z430).
文摘Riboflavin (vitamin B2) participates in a variety of redox processes that affect plant defense responses. Previously we have shown that riboflavin induces pathogen resistance in the absence of hypersensitive cell death (HCD) in plants. Herein, we report that riboflavin induces priming of defense responses in Arabidopsis thaliana toward infection by virulent Pseudomonas syringae pv. tomato DC3000 (Pst). Induced resistance was mechanistically connected with the expression of defense response genes and cellular defense events, including H202 burst, HCD, and callose deposition in the plant. Riboflavin treatment and inoculation of plants with Pst were neither active but both synergized to induce defense responses. The priming process needed NPRI (essential regulator of systemic acquired resistance) and maintenance of H202 burst but was independent of salicylic acid, jasmonic acid, ethylene, and abscisic acid. Our results suggest that the role of riboflavin in priming defenses is subject to a signaling process distinct from the known pathways of hormone signal transduction.
文摘Plasma membrane (PM) H+-ATPases are the primary pumps responsible for the establishment of cellular mem- brane potential in plants. In addition to regulating basic aspects of plant cell function, these enzymes contribute to sig- naling events in response to diverse environmental stimuli. Here, we focus on the roles of the PM H+-ATPase during plant- pathogen interactions. PM H+-ATPases are dynamically regulated during plant immune responses and recent quantitative proteomics studies suggest complex spatial and temporal modulation of PM H+-ATPase activity during early pathogen recognition events. Additional data indicate that PM H+-ATPases cooperate with the plant immune signaling protein RIN4 to regulate stomatal apertures during bacterial invasion of leaf tissue. Furthermore, pathogens have evolved mechanisms to manipulate PM H+-ATPase activity during infection. Thus, these ubiquitous plant enzymes contribute to plant immune responses and are targeted by pathogens to increase plant susceptibility.
文摘Heterotrimeric GTP-binding proteins, which consist of Gα, Gβ, and Gγ subunits, play important roles in transducing extracellular signals perceived by cell surface receptors into intracellular physiological responses. In addition to a single prototypical Gα protein (GPA1), Arabidopsis has three unique Gα-Iike proteins, known as XLG1, XLG2, and XLG3, that have been found to be localized in nuclei, although their functions and mode of action remain largely unknown. Through a transcriptomic analysis, we found that XLG2 and XLG3 were rapidly induced by infection with the bacterial pathogen Pseudomonas syringae, whereas the XLG1 transcript level was not affected by pathogen infection. A reverse genetic screen revealed that the xlg2 loss-of-function mutation causes enhanced susceptibility to P. syringae. Transcriptome profiling revealed that the xlg2 mutation affects pathogen-triggered induction of a small set of defense-related genes. However, xlgl and xlg3 mutants showed no difference from wild-type plants in resistance to P. syringae, In addition, the xlg2 xlg3 double mutant and the xlgl xlg2 xlg3 triple mutant were not significantly different from the xlg2 single mutant in the disease resistance phenotype, suggesting that the roles of XLG1 and XLG3 in defense, if any, are less significant than for XLG2. Constitutive overexpression of XLG2 leads to the accumulation of abnormal transcripts from multiple defense-related genes. Through co-immunoprecipitation assays, XLG2 was found to interact with AGB1, the sole Gβ subunit in Arabidopsis, which has previously been found to be a positive regulator in resistance to necrotrophic fungal pathogens. However, no significant difference was found between three xlg single mutants, the xlg2 xlg3 double mutant, the xlgtriple mutant, and wild-type plants in resistance to the necrotrophic fungal pathogens Botrytis cinerea or Alternaria brassicicola. These results suggest that XLG2 and AGB1 are components of a G-protein complex different from the prototypical heterotrimeric
基金This work was supported by a Deutsche Forschungsgemeinschaft (DFG) grant,financed by the DFG grant,by the Swiss National Science Foundation grant
文摘Calcium acts as a second messenger for signaling to a variety of stimuli including MAMPs (Microbe-Associated Molecular Patterns), such as fig22 and elf18 that are derived from bacterial flagellin and elongation factor Tu, respectively. Here, Arabidopsis thaliana mutants with changed calcium elevation (cce) in response to fig22 treatment were isolated and characterized. Besides novel mutant alleles of the fig22 receptor, FLS2 (Flagellin-Sensitive 2), and the receptor-associated kinase, BAK1 (Brassinosteroid receptor 1-Associated Kinase 1), the new cce mutants can be categorized into two main groups--those with a reduced or an enhanced calcium elevation. Moreover, cce mutants from both groups show differ- ential phenotypes to different sets of MAMPs. Thus, these mutants will facilitate the discovery of novel components in early MAMP signaling and bridge the gaps in current knowledge of calcium signaling during plant-microbe interactions. Last but not least, the screening method is optimized for speed (covering 384 plants in 3 or 10 h) and can be adapted to genetically dissect any other stimuli that induce a change in calcium levels.