Jasmonates (JAs) are plant hormones with essential roles in plant defense and development. The basic- helix-loop-helix (bHLH) transcription factor (TF) MYC2 has recently emerged as a master regulator of most asp...Jasmonates (JAs) are plant hormones with essential roles in plant defense and development. The basic- helix-loop-helix (bHLH) transcription factor (TF) MYC2 has recently emerged as a master regulator of most aspects of the jasmonate (JA) signaling pathway in Arabidopsis. MYC2 coordinates JA-mediated defense responses by antagonistically regulating two different branches of the JA signaling pathway that determine resistance to pests and pathogens, respectively. MYC2 is required for induced systemic resistance (ISR) triggered by beneficial soil microbes while MYC2 function is targeted by pathogens during effector-mediated suppression of innate immunity in roots. Another notable function of MYC2 is the regulation of crosstalk between the signaling pathways of JA and those of other phytohormones such as abscisic acid (ABA), salicylic acid (SA), gibberellins (GAs), and auxin (IAA). MYC2 also regulates interactions between JA signaling and light, phytochrome signaling, and the circadian clock, MYC2 is involved in JA-regulated plant development, lateral and adventitious root formation, flowering time, and shade avoidance syndrome. Related bHLH TFs MYC3 and MYC4 also regulate both overlapping and distinct MYC2-regulated functions in Arabidopsis while MYC2 orthologs act as 'master switches' that regulate JA-mediated biosynthesis of secondary metabolites. Here, we briefly review recent studies that revealed mechanistic new insights into the mode of action of this versatile TF.展开更多
WRKY transcription factors have many regulatory roles we isolated a rice WRKY gene (OsWRKY31) that is induced in response to biotic and abiotic stresses. In this study, by the rice blast fungus Magnaporthe grisea an...WRKY transcription factors have many regulatory roles we isolated a rice WRKY gene (OsWRKY31) that is induced in response to biotic and abiotic stresses. In this study, by the rice blast fungus Magnaporthe grisea and auxin. This gene encodes a polypeptide of 211 amino-acid residues and belongs to a subgroup of the rice WRKY gene family that probably originated after the divergence of monocot and dicot plants. OsWRKY31 was found to be localized to the nucleus of onion epidermis cells to transiently express OsWRKY31-eGFP fusion protein. Analysis of OsWRKY31 and its mutants fused with a Gal4 DNA-binding domain indicated that OsWRKY31 has transactivation activity in yeast. Overexpression of the OsWRKY31 gene was found to enhance resistance against infection with M. grisea, and the transgenic lines exhibited reduced lateral root formation and elongation compared with wild-type and RNAi plants. The lines with overexpression showed constitutive expression of many defense-related genes, such as PBZI and OsSci2, as well as early auxin-response genes, such as OslAA4 and OsCrll genes. Furthermore, the plants with overexpression were less sensitive to exogenously supplied IBA, NAA and 2,4-1) at high concentrations, suggesting that overexpression of the OsWRKY31 gene might alter the auxin response or transport. These results also suggest that OsWRKY31 might be a common component in the signal transduction pathways of the auxin response and the defense response in rice.展开更多
The complement system plays a crucial role in the innate defense against common pathogens. Activation of complement leads to robust and efficient proteolytic cascades, which terminate in opsonization and lysis of the ...The complement system plays a crucial role in the innate defense against common pathogens. Activation of complement leads to robust and efficient proteolytic cascades, which terminate in opsonization and lysis of the pathogen as well as in the generation of the classical inflammatory response through the production of potent proinflammatory molecules. More recently, however, the role of complement in the immune response has been expanded due to observations that link complement activation to adaptive immune responses. It is now appreciated that complement is a functional bridge between innate and adaptive immune responses that allows an integrated host defense to pathogenic challenges. As such, a study of its functions allows insight into the molecular underpinnings of host-pathogen interactions as well as the organization and orchestration of the host immune response. This review attempts to summarize the roles that complement plays in both innate and adaptive immune responses and the consequences of these interactions on host defense.展开更多
Jasmonic acid (JA) is an important phytohormone that regulates plant defense responses against herbivore attack, pathogen infection and mechanical wounding. In this report, we provided biochemical and genetic eviden...Jasmonic acid (JA) is an important phytohormone that regulates plant defense responses against herbivore attack, pathogen infection and mechanical wounding. In this report, we provided biochemical and genetic evidence to show that the Arabidopsis thaliana NAC family proteins ANAC019 and ANAC055 might function as transcription activators to regulate JA-induced expression of defense genes. The role of the two NAC genes in JA signaling was examined with the anacO19 anac055 double mutant and with transgenic plants overexpressing ANACO19 or ANAC055. The anacO19 anac055 double mutant plants showed attenuated JA-induced VEGETATIVE STORAGE PROTEIN1 (VSP1) and LIPOXYGENASE2 (LOX2) expression, whereas transgenic plants overexpressing the two NAC genes showed enhanced JA-induced VSP1 and LOX2 expression. That the JA-induced expression of the two NAC genes depends on the function of COIl and AtMYC2, together with the finding that overexpression of ANACO19 partially rescued the JA-related phenotype of the atmyc2-2 mutant, has led us to a hypothesis that the two NAC proteins act downstream of AtMYC2 to regulate JA-signaled defense responses. Further evidence to substantiate this idea comes from the observation that the response of the anacO19 anac055 double mutant to a necrotrophic fungus showed high similarity to that of the atmyc2-2 mutant.展开更多
The small phenolic compound salicylic acid (SA) plays an important regulatory role in multiple physiological processes including plant im- mune response. Significant progress has been made during the past two decade...The small phenolic compound salicylic acid (SA) plays an important regulatory role in multiple physiological processes including plant im- mune response. Significant progress has been made during the past two decades in understanding the SA-mediated defense signaling network. Characterization of a number of genes functioning in SA biosynthesis, conjugation, accumulation, signaling, and crosstalk with other hormones such as jasmonic acid, ethylene, abscisic acid, auxin, gibberellic acid, cytokinin, brassinosteroid, and peptide hormones has sketched the finely tuned immune response network. Full understanding of the mech- anism of plant immunity will need to take advantage of fast developing genomics tools and bioinformatics techniques. However, elucidating genetic components involved in these pathways by conventional ge- netics, biochemistry, and molecular biology approaches will continue to be a major task of the community. High-throughput method for SA quantification holds the potential for isolating additional mutants related to SA-mediated defense signaling.展开更多
The major innate immune cell types involved in tuberculosis(TB)infection are macrophages,dendritic cells(DCs),neutrophils and natural killer(NK)cells.These immune cells recognize the TB-causing pathogen Mycobacterium ...The major innate immune cell types involved in tuberculosis(TB)infection are macrophages,dendritic cells(DCs),neutrophils and natural killer(NK)cells.These immune cells recognize the TB-causing pathogen Mycobacterium tuberculosis(Mtb)through various pattern recognition receptors(PRRs),including but not limited to Toll-like receptors(TLRs),Nod-like receptors(NLRs)and C-type lectin receptors(CLRs).Upon infection by Mtb,the host orchestrates multiple signaling cascades via the PRRs to launch a variety of innate immune defense functions such as phagocytosis,autophagy,apoptosis and inflammasome activation.In contrast,Mtb utilizes numerous exquisite strategies to evade or circumvent host innate immunity.Here we discuss recent research on major host innate immune cells,PRR signaling,and the cellular functions involved in Mtb infection,with a specific focus on the host’s innate immune defense and Mtb immune evasion.A better understanding of the molecular mechanisms underlying host–pathogen interactions could provide a rational basis for the development of effective anti-TB therapeutics.展开更多
ABSTRACT Plant hormones have been extensively studied for their importance in innate immunity particularly in the dicotyledonous model plant Arabidopsis thaliana. However, only in the last decade, plant hormones were ...ABSTRACT Plant hormones have been extensively studied for their importance in innate immunity particularly in the dicotyledonous model plant Arabidopsis thaliana. However, only in the last decade, plant hormones were demonstrated to play conserved and divergent roles in fine-tuning immune responses in rice (Oryza sativa L.), a monocotyledonous model crop plant. Emerging evidence showed that salicylic acid (SA) plays a role in rice basal defense but is differentially required by rice pattern recognition receptor (PRR) and resistance (R) protein-mediated immunity, and its function is likely dependent on the signaling pathway rather than the change of endogenous levels. Jasmonate (JA) plays an important role in rice basal defense against bacterial and fungal infection and may be involved in the SA-mediated resistance. Ethylene (ET) can act as a positive or negative modulator of disease resistance, depending on the pathogen type and environmental conditions. Brassinosteroid (BR) signaling and abscisic acid (ABA) either promote or defend against infection of pathogens with distinct infection/colonization strategies. Auxin and gibberellin (GA) are generally thought of as negative regulators of innate immunity in rice. Moreover, GA interacts antagonistically with JA signaling in rice development and immunity through the DELLA protein as a master regulator of the two hormone pathways. In this review, we summarize the roles of plant hormones in rice immunity and discuss their interplay/crosstalk mechanisms and the complex regulatory network of plant hormone pathways in fine-tuning rice immunity and growth.展开更多
The rice Xa21 gene, which confers resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), encodes a receptor-like kinase, Few components involved in transducing the Xa21-mediated defense response h...The rice Xa21 gene, which confers resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), encodes a receptor-like kinase, Few components involved in transducing the Xa21-mediated defense response have yet been identified. Here, we report that XA21 binds to a WRKY transcription factor, called OsWRKY62. The OsWRKY62 gene encodes two splice variants (OsWRKY62.1 and OsWRKY62.2). OsWRKY62.1:smGFP2 and OsWRKY62.2:smGFP2 fusion pro- teins partially localize to the nucleus. Transgenic plants overexpressing OsWRKY62.1 are compromised in basal defense and Xa21-mediated resistance to Xoo. Furthermore, overexpression of OsWRKY62.1 suppresses the activation of defenserelated genes. These results imply that OsWRKY62 functions as a negative regulator of innate immunity in rice, and serves as a critical mediator of both basal and race-specific defense responses.展开更多
Plants respond to insect herbivory with responses broadly known as direct defenses, indirect defenses, and tolerance. Direct defenses include all plant traits that affect susceptibility of host plants by themselves. O...Plants respond to insect herbivory with responses broadly known as direct defenses, indirect defenses, and tolerance. Direct defenses include all plant traits that affect susceptibility of host plants by themselves. Overall categories of direct plant defenses against insect herbivores include limiting food supply, reducing nutrient value, reducing preference, disrupting physical structures, and inhibiting chemical pathways of the attacking insect. Major known defense chemicals include plant secondary metabolites, protein inhibitors of insect digestive enzymes, proteases, lectins, amino acid deaminases and oxidases. Multiple factors with additive or even synergistic impact are usually involved in defense against a specific insect species, and factors of major importance to one insect species may only be of secondary importance or not effective at all against another insect species. Extensive qualitative and quantitative high throughput analyses of temporal and spatial variations in gene expression, protein level and activity, and metabolite concentration will accelerate not only the understanding of the overall mechanisms of direct defense, but also accelerate the identification of specific targets for enhancement of plant resistance for agriculture.展开更多
文摘Jasmonates (JAs) are plant hormones with essential roles in plant defense and development. The basic- helix-loop-helix (bHLH) transcription factor (TF) MYC2 has recently emerged as a master regulator of most aspects of the jasmonate (JA) signaling pathway in Arabidopsis. MYC2 coordinates JA-mediated defense responses by antagonistically regulating two different branches of the JA signaling pathway that determine resistance to pests and pathogens, respectively. MYC2 is required for induced systemic resistance (ISR) triggered by beneficial soil microbes while MYC2 function is targeted by pathogens during effector-mediated suppression of innate immunity in roots. Another notable function of MYC2 is the regulation of crosstalk between the signaling pathways of JA and those of other phytohormones such as abscisic acid (ABA), salicylic acid (SA), gibberellins (GAs), and auxin (IAA). MYC2 also regulates interactions between JA signaling and light, phytochrome signaling, and the circadian clock, MYC2 is involved in JA-regulated plant development, lateral and adventitious root formation, flowering time, and shade avoidance syndrome. Related bHLH TFs MYC3 and MYC4 also regulate both overlapping and distinct MYC2-regulated functions in Arabidopsis while MYC2 orthologs act as 'master switches' that regulate JA-mediated biosynthesis of secondary metabolites. Here, we briefly review recent studies that revealed mechanistic new insights into the mode of action of this versatile TF.
文摘WRKY transcription factors have many regulatory roles we isolated a rice WRKY gene (OsWRKY31) that is induced in response to biotic and abiotic stresses. In this study, by the rice blast fungus Magnaporthe grisea and auxin. This gene encodes a polypeptide of 211 amino-acid residues and belongs to a subgroup of the rice WRKY gene family that probably originated after the divergence of monocot and dicot plants. OsWRKY31 was found to be localized to the nucleus of onion epidermis cells to transiently express OsWRKY31-eGFP fusion protein. Analysis of OsWRKY31 and its mutants fused with a Gal4 DNA-binding domain indicated that OsWRKY31 has transactivation activity in yeast. Overexpression of the OsWRKY31 gene was found to enhance resistance against infection with M. grisea, and the transgenic lines exhibited reduced lateral root formation and elongation compared with wild-type and RNAi plants. The lines with overexpression showed constitutive expression of many defense-related genes, such as PBZI and OsSci2, as well as early auxin-response genes, such as OslAA4 and OsCrll genes. Furthermore, the plants with overexpression were less sensitive to exogenously supplied IBA, NAA and 2,4-1) at high concentrations, suggesting that overexpression of the OsWRKY31 gene might alter the auxin response or transport. These results also suggest that OsWRKY31 might be a common component in the signal transduction pathways of the auxin response and the defense response in rice.
文摘The complement system plays a crucial role in the innate defense against common pathogens. Activation of complement leads to robust and efficient proteolytic cascades, which terminate in opsonization and lysis of the pathogen as well as in the generation of the classical inflammatory response through the production of potent proinflammatory molecules. More recently, however, the role of complement in the immune response has been expanded due to observations that link complement activation to adaptive immune responses. It is now appreciated that complement is a functional bridge between innate and adaptive immune responses that allows an integrated host defense to pathogenic challenges. As such, a study of its functions allows insight into the molecular underpinnings of host-pathogen interactions as well as the organization and orchestration of the host immune response. This review attempts to summarize the roles that complement plays in both innate and adaptive immune responses and the consequences of these interactions on host defense.
基金Acknowledgments We are grateful to Dr Xinnian Dong (Duke University, Durham, NC, USA) for critical reading of the manuscript and valuable suggestions. We thank Dr Jianmin Zhou (National Institute of Biological Sciences, Beijing, China) for providing the fungus strain Botrytis cinerea, Dr Salome Prat (Institut de Biologia Molecular de Barcelona, Barcelona, Spain) for providing homozygous atmyc2-2 (T-DNA insertion line SALK_083483) seeds and Dr Daoxin Xie (Tsinghua University, Beijing, China) for providing the coil-I seeds. This work was supported by grants from The National Natural Science Foundation of China (30530440), The Ministry of Science and Technology of China (2006CB 102004, 2006AA10A 116), and The Chinese Academy of Sciences (KSCX2-YW-N-045).
文摘Jasmonic acid (JA) is an important phytohormone that regulates plant defense responses against herbivore attack, pathogen infection and mechanical wounding. In this report, we provided biochemical and genetic evidence to show that the Arabidopsis thaliana NAC family proteins ANAC019 and ANAC055 might function as transcription activators to regulate JA-induced expression of defense genes. The role of the two NAC genes in JA signaling was examined with the anacO19 anac055 double mutant and with transgenic plants overexpressing ANACO19 or ANAC055. The anacO19 anac055 double mutant plants showed attenuated JA-induced VEGETATIVE STORAGE PROTEIN1 (VSP1) and LIPOXYGENASE2 (LOX2) expression, whereas transgenic plants overexpressing the two NAC genes showed enhanced JA-induced VSP1 and LOX2 expression. That the JA-induced expression of the two NAC genes depends on the function of COIl and AtMYC2, together with the finding that overexpression of ANACO19 partially rescued the JA-related phenotype of the atmyc2-2 mutant, has led us to a hypothesis that the two NAC proteins act downstream of AtMYC2 to regulate JA-signaled defense responses. Further evidence to substantiate this idea comes from the observation that the response of the anacO19 anac055 double mutant to a necrotrophic fungus showed high similarity to that of the atmyc2-2 mutant.
基金supported by a grant from the National Science Foundation (IOS-0842716) to Dr.Z Mou
文摘The small phenolic compound salicylic acid (SA) plays an important regulatory role in multiple physiological processes including plant im- mune response. Significant progress has been made during the past two decades in understanding the SA-mediated defense signaling network. Characterization of a number of genes functioning in SA biosynthesis, conjugation, accumulation, signaling, and crosstalk with other hormones such as jasmonic acid, ethylene, abscisic acid, auxin, gibberellic acid, cytokinin, brassinosteroid, and peptide hormones has sketched the finely tuned immune response network. Full understanding of the mech- anism of plant immunity will need to take advantage of fast developing genomics tools and bioinformatics techniques. However, elucidating genetic components involved in these pathways by conventional ge- netics, biochemistry, and molecular biology approaches will continue to be a major task of the community. High-throughput method for SA quantification holds the potential for isolating additional mutants related to SA-mediated defense signaling.
基金the National Key Research and Development Program of China(Grant Nos.2017YFA0505900 and 2017YFD0500300)the National Basic Research Programs of China(Grant No.2014CB74440)+2 种基金the National Natural Science Foundation of China(Grant Nos.81371769 and 81571954)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDPB03)the Youth Innovation Promotion Association CAS(Grant No.Y12A027BB2).
文摘The major innate immune cell types involved in tuberculosis(TB)infection are macrophages,dendritic cells(DCs),neutrophils and natural killer(NK)cells.These immune cells recognize the TB-causing pathogen Mycobacterium tuberculosis(Mtb)through various pattern recognition receptors(PRRs),including but not limited to Toll-like receptors(TLRs),Nod-like receptors(NLRs)and C-type lectin receptors(CLRs).Upon infection by Mtb,the host orchestrates multiple signaling cascades via the PRRs to launch a variety of innate immune defense functions such as phagocytosis,autophagy,apoptosis and inflammasome activation.In contrast,Mtb utilizes numerous exquisite strategies to evade or circumvent host innate immunity.Here we discuss recent research on major host innate immune cells,PRR signaling,and the cellular functions involved in Mtb infection,with a specific focus on the host’s innate immune defense and Mtb immune evasion.A better understanding of the molecular mechanisms underlying host–pathogen interactions could provide a rational basis for the development of effective anti-TB therapeutics.
基金This work was supported by National Key Basic Research and Development Program Grant 2011 CB100700 (to Z.H.) Natural Science Foundation of China Grants 91117018 and 30730064 (to Z.H.)and US Department of Agriculture National Research Initiative Grant 2003-35319-17873 (to Y.Y.). No conflict of interest declared.
文摘ABSTRACT Plant hormones have been extensively studied for their importance in innate immunity particularly in the dicotyledonous model plant Arabidopsis thaliana. However, only in the last decade, plant hormones were demonstrated to play conserved and divergent roles in fine-tuning immune responses in rice (Oryza sativa L.), a monocotyledonous model crop plant. Emerging evidence showed that salicylic acid (SA) plays a role in rice basal defense but is differentially required by rice pattern recognition receptor (PRR) and resistance (R) protein-mediated immunity, and its function is likely dependent on the signaling pathway rather than the change of endogenous levels. Jasmonate (JA) plays an important role in rice basal defense against bacterial and fungal infection and may be involved in the SA-mediated resistance. Ethylene (ET) can act as a positive or negative modulator of disease resistance, depending on the pathogen type and environmental conditions. Brassinosteroid (BR) signaling and abscisic acid (ABA) either promote or defend against infection of pathogens with distinct infection/colonization strategies. Auxin and gibberellin (GA) are generally thought of as negative regulators of innate immunity in rice. Moreover, GA interacts antagonistically with JA signaling in rice development and immunity through the DELLA protein as a master regulator of the two hormone pathways. In this review, we summarize the roles of plant hormones in rice immunity and discuss their interplay/crosstalk mechanisms and the complex regulatory network of plant hormone pathways in fine-tuning rice immunity and growth.
文摘The rice Xa21 gene, which confers resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), encodes a receptor-like kinase, Few components involved in transducing the Xa21-mediated defense response have yet been identified. Here, we report that XA21 binds to a WRKY transcription factor, called OsWRKY62. The OsWRKY62 gene encodes two splice variants (OsWRKY62.1 and OsWRKY62.2). OsWRKY62.1:smGFP2 and OsWRKY62.2:smGFP2 fusion pro- teins partially localize to the nucleus. Transgenic plants overexpressing OsWRKY62.1 are compromised in basal defense and Xa21-mediated resistance to Xoo. Furthermore, overexpression of OsWRKY62.1 suppresses the activation of defenserelated genes. These results imply that OsWRKY62 functions as a negative regulator of innate immunity in rice, and serves as a critical mediator of both basal and race-specific defense responses.
文摘Plants respond to insect herbivory with responses broadly known as direct defenses, indirect defenses, and tolerance. Direct defenses include all plant traits that affect susceptibility of host plants by themselves. Overall categories of direct plant defenses against insect herbivores include limiting food supply, reducing nutrient value, reducing preference, disrupting physical structures, and inhibiting chemical pathways of the attacking insect. Major known defense chemicals include plant secondary metabolites, protein inhibitors of insect digestive enzymes, proteases, lectins, amino acid deaminases and oxidases. Multiple factors with additive or even synergistic impact are usually involved in defense against a specific insect species, and factors of major importance to one insect species may only be of secondary importance or not effective at all against another insect species. Extensive qualitative and quantitative high throughput analyses of temporal and spatial variations in gene expression, protein level and activity, and metabolite concentration will accelerate not only the understanding of the overall mechanisms of direct defense, but also accelerate the identification of specific targets for enhancement of plant resistance for agriculture.