This article discusses the transition of a form of nanoimprint lithography technology,known as Jet and Flash Imprint Lithography(J-FIL),from research to a commercial fabrication infrastructure for leading-edge semicon...This article discusses the transition of a form of nanoimprint lithography technology,known as Jet and Flash Imprint Lithography(J-FIL),from research to a commercial fabrication infrastructure for leading-edge semiconductor integrated circuits(ICs).Leadingedge semiconductor lithography has some of the most aggressive technology requirements,and has been a key driver in the 50-year history of semiconductor scaling.Introducing a new,disruptive capability into this arena is therefore a case study in a“highrisk-high-reward”opportunity.This article first discusses relevant literature in nanopatterning including advanced lithography options that have been explored by the IC fabrication industry,novel research ideas being explored,and literature in nanoimprint lithography.The article then focuses on the J-FIL process,and the interdisciplinary nature of risk,involving nanoscale precision systems,mechanics,materials,material delivery systems,contamination control,and process engineering.Next,the article discusses the strategic decisions that were made in the early phases of the project including:(i)choosing a step and repeat process approach;(ii)identifying the first target IC market for J-FIL;(iii)defining the product scope and the appropriate collaborations to share the risk-reward landscape;and(iv)properly leveraging existing infrastructure,including minimizing disruption to the widely accepted practices in photolithography.Finally,the paper discusses the commercial J-FIL stepper system and associated infrastructure,and the resulting advances in the key lithographic process metrics such as critical dimension control,overlay,throughput,process defects,and electrical yield over the past 5 years.This article concludes with the current state of the art in J-FIL technology for IC fabrication,including description of the high volume manufacturing stepper tools created for advanced memory manufacturing.展开更多
The replacement metal gate(RMG) defectivity performance control is very challenging in high-k metal gate(HKMG) chemical mechanical polishing(CMP). In this study, three major defect types, including fall-on parti...The replacement metal gate(RMG) defectivity performance control is very challenging in high-k metal gate(HKMG) chemical mechanical polishing(CMP). In this study, three major defect types, including fall-on particles, micro-scratch and corrosion have been investigated. The research studied the effects of polishing pad,pressure, rotating speed, flow rate and post-CMP cleaning on the three kinds of defect, which finally eliminated the defects and achieved good surface morphology. This study will provide an important reference value for the future research of aluminum metal gate CMP.展开更多
Selective laser melting(SLM) is an attractive rapid prototyping technology for the fabrication of metallic components with complex structure and high performance. Aluminum alloy, one of the most pervasive structural m...Selective laser melting(SLM) is an attractive rapid prototyping technology for the fabrication of metallic components with complex structure and high performance. Aluminum alloy, one of the most pervasive structural materials, is well known for high specific strength and good corrosion resistance. But the poor laser formability of aluminum alloy restricts its application. There are problems such as limited processable materials, immature process conditions and metallurgical defects on SLM processing aluminum alloys. Some efforts have been made to solve the above problems. This paper discusses the current research status both related to the scientific understanding and technology applications. The paper begins with a brief introduction of basic concepts of aluminum alloys and technology characterization of laser selective melting. In addition, solidification theory of SLM process and formation mechanism of metallurgical defects are discussed. Then, the current research status of microstructure, properties and heat treatment of SLM processing aluminum alloys is systematically reviewed respectively. Lastly, a future outlook is given at the end of this review paper.展开更多
As one kind of key components with enormous quantities and diversities, the bent tube parts satisfy the increasing needs for lightweight and high-strength product from both materials and structure aspects. The bent tu...As one kind of key components with enormous quantities and diversities, the bent tube parts satisfy the increasing needs for lightweight and high-strength product from both materials and structure aspects. The bent tubes have been widely used in many high-end industries such as aviation, aerospace, shipbuilding, automobile, energy and health care. The tube bending has become one of the key manufacturing technologies for lightweight product forming. Via the analysis of bending characteristics and multiple defects, advances on exploring the common issues in tube bending are summarized regarding wrinkling instability at the intrados, wall thinning (cracking) at the extrados, springback phenomenon, cross-section deformation, forming limit and process/ tooling design/optimization. Some currently developed bending techniques are reviewed in terms of their advantages and limitations. Finally, in view of the urgent requirements of high-performance complex bent tube components with difficult-todeform and lightweight materials in aviation and aerospace fields, the development trends and corresponding challenges are presented for realizing the precise and high-efficiency tube bending deformation.展开更多
Defect formation is a common problem in selective laser melting (SLM). This paper provides a review of defect formation mechanisms in SLM. It sum- marizes the recent research outcomes on defect findings and classifi...Defect formation is a common problem in selective laser melting (SLM). This paper provides a review of defect formation mechanisms in SLM. It sum- marizes the recent research outcomes on defect findings and classification, analyzes formation mechanisms of the common defects, such as porosities, incomplete fusion holes, and cracks. The paper discusses the effect of the process parameters on defect formation and the impact of defect formation on the mechanical properties of a fabri- cated part. Based on the discussion, the paper proposes strategies for defect suppression and control in SLM.展开更多
基金This work was partially funded by DARPA Contract No.N66001-02-C-8011NIST Advanced Technology Program Contract No.70NANB4H3012+2 种基金US DoD Contract No.N66001-06-C-2003DARPA A2P Program administered by AFRL Contract No.FA8650-15-C-7542by the National Science Foundation under Cooperative Agreement No.EEC-1160494.
文摘This article discusses the transition of a form of nanoimprint lithography technology,known as Jet and Flash Imprint Lithography(J-FIL),from research to a commercial fabrication infrastructure for leading-edge semiconductor integrated circuits(ICs).Leadingedge semiconductor lithography has some of the most aggressive technology requirements,and has been a key driver in the 50-year history of semiconductor scaling.Introducing a new,disruptive capability into this arena is therefore a case study in a“highrisk-high-reward”opportunity.This article first discusses relevant literature in nanopatterning including advanced lithography options that have been explored by the IC fabrication industry,novel research ideas being explored,and literature in nanoimprint lithography.The article then focuses on the J-FIL process,and the interdisciplinary nature of risk,involving nanoscale precision systems,mechanics,materials,material delivery systems,contamination control,and process engineering.Next,the article discusses the strategic decisions that were made in the early phases of the project including:(i)choosing a step and repeat process approach;(ii)identifying the first target IC market for J-FIL;(iii)defining the product scope and the appropriate collaborations to share the risk-reward landscape;and(iv)properly leveraging existing infrastructure,including minimizing disruption to the widely accepted practices in photolithography.Finally,the paper discusses the commercial J-FIL stepper system and associated infrastructure,and the resulting advances in the key lithographic process metrics such as critical dimension control,overlay,throughput,process defects,and electrical yield over the past 5 years.This article concludes with the current state of the art in J-FIL technology for IC fabrication,including description of the high volume manufacturing stepper tools created for advanced memory manufacturing.
基金Project supported by the Major National Science and Technology Special Projects(No.2009ZX02308)the Natural Science Foundation for the Youth of Hebei Province(Nos.F2012202094,F2015202267)the Outstanding Youth Science and Technology Innovation Fund of Hebei University of Technology(No.2013010)
文摘The replacement metal gate(RMG) defectivity performance control is very challenging in high-k metal gate(HKMG) chemical mechanical polishing(CMP). In this study, three major defect types, including fall-on particles, micro-scratch and corrosion have been investigated. The research studied the effects of polishing pad,pressure, rotating speed, flow rate and post-CMP cleaning on the three kinds of defect, which finally eliminated the defects and achieved good surface morphology. This study will provide an important reference value for the future research of aluminum metal gate CMP.
基金sponsored by National Key Research and Development Program "Additive Manufacturing and Laser Manufacturing" (No. 2016YFB1100101)Natural and Science Foundation of China (Grant Nos. 51775208, 51505166)+4 种基金Hubei Science Fund for Distinguished Young Scholars (No. 0216110085)Wuhan Morning Light Plan of Youth Science and Technology (No. 0216110066)Graduates’ Innovation Fund, Huazhong University of Science and Technology (No. 5003110027)Fundamental Research Funds for the Central University (No. 2017JYCXJJ004)the Academic frontier youth team at Huazhong University of Science and Technology (HUST)
文摘Selective laser melting(SLM) is an attractive rapid prototyping technology for the fabrication of metallic components with complex structure and high performance. Aluminum alloy, one of the most pervasive structural materials, is well known for high specific strength and good corrosion resistance. But the poor laser formability of aluminum alloy restricts its application. There are problems such as limited processable materials, immature process conditions and metallurgical defects on SLM processing aluminum alloys. Some efforts have been made to solve the above problems. This paper discusses the current research status both related to the scientific understanding and technology applications. The paper begins with a brief introduction of basic concepts of aluminum alloys and technology characterization of laser selective melting. In addition, solidification theory of SLM process and formation mechanism of metallurgical defects are discussed. Then, the current research status of microstructure, properties and heat treatment of SLM processing aluminum alloys is systematically reviewed respectively. Lastly, a future outlook is given at the end of this review paper.
基金Foundation items: National Natural Science Foundation of China (50905144) State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (09-10)+2 种基金 NPU Foundation for Fundamental Research (JC201028) Fund of the State Key Laboratory of Solidification Processing in NWPU, Natural Science Basic Research Plan in Shaanxi Province (2011JQ6004) "111" Project (B08040)
文摘As one kind of key components with enormous quantities and diversities, the bent tube parts satisfy the increasing needs for lightweight and high-strength product from both materials and structure aspects. The bent tubes have been widely used in many high-end industries such as aviation, aerospace, shipbuilding, automobile, energy and health care. The tube bending has become one of the key manufacturing technologies for lightweight product forming. Via the analysis of bending characteristics and multiple defects, advances on exploring the common issues in tube bending are summarized regarding wrinkling instability at the intrados, wall thinning (cracking) at the extrados, springback phenomenon, cross-section deformation, forming limit and process/ tooling design/optimization. Some currently developed bending techniques are reviewed in terms of their advantages and limitations. Finally, in view of the urgent requirements of high-performance complex bent tube components with difficult-todeform and lightweight materials in aviation and aerospace fields, the development trends and corresponding challenges are presented for realizing the precise and high-efficiency tube bending deformation.
基金Supported by National Natural Science Foundation of China(Grant No.51605077)Science Challenge Project(Grant No.CKY2016212A506-0101)Science Fund for Creative Research Groups of NSFC(Grant No.51621064)
文摘Defect formation is a common problem in selective laser melting (SLM). This paper provides a review of defect formation mechanisms in SLM. It sum- marizes the recent research outcomes on defect findings and classification, analyzes formation mechanisms of the common defects, such as porosities, incomplete fusion holes, and cracks. The paper discusses the effect of the process parameters on defect formation and the impact of defect formation on the mechanical properties of a fabri- cated part. Based on the discussion, the paper proposes strategies for defect suppression and control in SLM.