Rare-earth tantalates and niobates(REjTaO7 and REjNbO7)have been considered as promising candidate thermal barrier coating(TBC)materials in next generation gas-turbine engines due to their ultra-low thermal conductivi...Rare-earth tantalates and niobates(REjTaO7 and REjNbO7)have been considered as promising candidate thermal barrier coating(TBC)materials in next generation gas-turbine engines due to their ultra-low thermal conductivity and better thermal stability than yttria-stabilized zirconia(YSZ).However,the low Vickers hardness and toughness are the main shortcomings of RE;TaO-and REjNbOr that limit their applications as TBC materials.To increase the hardness,high entropy(Yu3Ybu3Er/3)sTaOr,(Y13YbnErns)NbO,and(Sm1/6Eu1/6Y 1/6Yb1/6Lu1/6Er1/6)3(Nb1/2Ta1/2)O7 are designed and synthesized in this study.These high entropy ceramics exhibit high Vickers hardness(10.912.0 GPa),close thermal expansion coefficients to that of single-principal-component RE3TaO,and RE;NbO,(7.9×10^-6-10.8×10-6 C-1 at room temperature),good phase stability,and good chemical compatibility with thermally grown Al2O3,which make them promising for applications as candidate TBC materials.展开更多
High-entropy oxides(HEOs)are widely researched as potential materials for thermal barrier coatings(TBCs).However,the relatively low thermal expansion coefficient(TEC)of those materials severely restricts their practic...High-entropy oxides(HEOs)are widely researched as potential materials for thermal barrier coatings(TBCs).However,the relatively low thermal expansion coefficient(TEC)of those materials severely restricts their practical application.In order to improve the poor thermal expansion property and further reduce the thermal conductivity,high-entropy(La_(0.2)Nd_(0.2)Sm_(0.2)Eu_(0.2)Gd_(0.2))_(2)Ce_(2)O_(7) is designed and synthesized in this work.The as-prepared multicomponent material is formed in a simple disordered fluorite structure due to the high-entropy stabilization effect.Notably,it exhibits a much higher TEC of approximately 12.0×10^(−6) K^(−1) compared with those of other high-entropy oxides reported in the field of TBCs.Besides,it presents prominent thermal insulation behavior with a low intrinsic thermal conductivity of 0.92 W·m^(−1)·K^(−1) at 1400℃,which can be explained by the existence of high concentration oxygen vacancies and highly disordered arrangement of multicomponent cations in the unique high-entropy configuration.Through high-temperature in-situ X-ray diffraction(XRD)measurement,this material shows excellent phase stability up to 1400℃.Benefiting from the solid solution strengthening effect,it shows a higher hardness of 8.72 GPa than the corresponding single component compounds.The superior thermo-physical performance above enables(La_(0.2)Nd_(0.2)Sm_(0.2)Eu_(0.2)Gd_(0.2))_(2)Ce_(2)O_(7) a promising TBC material.展开更多
Hepatitis B virus(HBV) infection is a global public health concern. HBV causes chronic infection in patients and can lead to liver cirrhosis, hepatocellular carcinoma, and other severe liver diseases. Thus, understand...Hepatitis B virus(HBV) infection is a global public health concern. HBV causes chronic infection in patients and can lead to liver cirrhosis, hepatocellular carcinoma, and other severe liver diseases. Thus, understanding HBV-related pathogenesis is of particular importance for prevention and clinical intervention. HBV surface antigens are indispensable for HBV virion formation and are useful viral markers for diagnosis and clinical assessment. During chronic HBV infection, HBV genomes may acquire and accumulate mutations and deletions, leading to the expression of defective HBV surface antigens. These defective HBV surface antigens have been found to play important roles in the progression of HBV-associated liver diseases. In this review, we focus our discussion on the nature of defective HBV surface antigen mutations and their contribution to the pathogenesis of fulminant hepatitis B. The relationship between defective surface antigens and occult HBV infection are also discussed.展开更多
RNA editing is a posttranscriptional process that is important in mitochondria and plastids of higher plants. All RNA editing-specific trans-factors reported so far belong to PLS-class of pentatricopeptide repeat(PPR)...RNA editing is a posttranscriptional process that is important in mitochondria and plastids of higher plants. All RNA editing-specific trans-factors reported so far belong to PLS-class of pentatricopeptide repeat(PPR)proteins. Here, we report the map-based cloning and molecular characterization of a defective kernel mutant dek39 in maize. Loss of Dek39 function leads to delayed embryogenesis and endosperm development, reduced kernel size, and seedling lethality. Dek39 encodes an E subclass PPR protein that targets to both mitochondria and chloroplasts, and is involved in RNA editing in mitochondrial NADH dehydrogenase3(nad3) at nad3-247 and nad3-275. C-to-U editing of nad3-275 is not conserved and even lost in Arabidopsis, consistent with the idea that no close DEK39 homologs are present in Arabidopsis. However, the amino acids generated by editing nad3-247 and nad3-275 are highly conserved in many other plant species, and the reductions of editing at these two sites decrease the activity of mitochondria NADH dehydrogenase complex I,indicating that the alteration of amino acid sequence is necessary for Nad3 function. Our results indicate that Dek39 encodes an E sub-class PPR protein that is involved in RNA editing of multiple sites and is necessary for seed development of maize.展开更多
Ir-based dectrocatalysts have been system- atically studied for a variety of applications, among which the electrocatalysis for oxygen evolution reaction (OER) is one of the most prominent. The investigation on surf...Ir-based dectrocatalysts have been system- atically studied for a variety of applications, among which the electrocatalysis for oxygen evolution reaction (OER) is one of the most prominent. The investigation on surface-micro- structure-sensitive catalytic activity in different pH media is of great significance for developing efficient electrocatalysts and corresponding mechanism research. Herein, shape-tunable Ir- Pd alloy nanocrystals, including nano-hollow-spheres (NHSs), nanowires (NWs), and nanotetrahedrons (NTs), are synthe- sized via a facile one-pot solvothermal method, Electro- chemical studies show that the OER activity of the Ir-Pd alloy nanocatalysts exhibits surface-microstructure-sensitive en- hancement in acidic and alkaline media. Ir-Pd NWs and NTs show more than five times higher mass activity than com- mercial Ir/C catalyst at an overpotential of 0.25 V in acidic and alkaline media. Post-XPS analyses reveal that surface Ir(VI) oxide generated at surface defective sites of Ir-Pd nanocata- lysts is a possible key intermediate for OER. In acidic medium, the specific activity of Ir-Pd nanocatalysts has a positive cor- relation with the surface roughness of NWs 〉 NHSs 〉 NTs. However, the strong dissociation of surface Ir(VI) species (IrO42-) at surface defective sites is a possible obstacle for the formation of Ir(VI) oxide, which reverses the activity sequence for OER in alkaline medium.展开更多
The convergence problem of many Krylov subspace methods, e.g., FOM, GCR, GMRES and QMR, for solving large unsymmetric (non-Hermitian) linear systems is considered in a unified way when the coefficient matrix A is defe...The convergence problem of many Krylov subspace methods, e.g., FOM, GCR, GMRES and QMR, for solving large unsymmetric (non-Hermitian) linear systems is considered in a unified way when the coefficient matrix A is defective and its spectrum lies in the open right (left) half plane. Related theoretical error bounds are established and some intrinsic relationships between the convergence speed and the spectrum of A are exposed. It is shown that these methods are likely to converge slowly once one of the three cases occurs: A is defective, the distribution of its spectrum is not favorable, or the Jordan basis of A is ill conditioned. In the proof, some properties on the higher order derivatives of Chebyshev polynomials in an ellipse in the complex plane are derived, one of which corrects a result that has been used extensively in the literature.展开更多
From the idea of failure of defective structures at high temperature beingcontrolled by two mechanisms: fast fracture due to creep crack growth initiating at the crack tipand creep rupture on the weakened section, a t...From the idea of failure of defective structures at high temperature beingcontrolled by two mechanisms: fast fracture due to creep crack growth initiating at the crack tipand creep rupture on the weakened section, a time-dependent failure assessment diagram (TDFAD) isdeveloped on the basis of the time dependent crack tip parameter J integral. According to theproposed TDFAD method, detailed crack initiation and creep crack growth analysis is avoided insafety assessments of high temperature structures by performing simple calculations of stressintensity factor and limit load. To evaluate the creep toughness parameter K_(mat), three differentexpressions are suggested on the basis of experimental load-line displacement, creep crackinitiation and growth parameters as well as the isochronous stress-strain curve. The influence ofservice factors such as temperature and service-time on the proposed TDFAD is discussed by using theproperties of 2.25CrlMo steel and an example is also presented to illustrate the approach.展开更多
The formations of defective MgC12 surfaces, and subsequent adsorption of Ti species and electron donor, as well as propylene polymerization over the Ziegler-Natta catalyst have been investigated using density function...The formations of defective MgC12 surfaces, and subsequent adsorption of Ti species and electron donor, as well as propylene polymerization over the Ziegler-Natta catalyst have been investigated using density functional theory (DFT) method. Twelve possible support models of regular and defective MgC12 (110) and (100) surfaces were built. The individual adsorptions of titanium chlorides as mononuclear or dinuclear, and ethyl benzoate (EB) as electron donor, on these models were evaluated. The analysis of energies presented the cases of EB adsorption were generally more stable than titanium chlorides on both surfaces. Thus, EB as internal electron donor mainly prevented TIC14 from coordinating on the MgC12 surfaces where mostly non-stereospecific active sites could be formed. Exceptionally, A5 the site model with terminal Cl-vacancy on the MgC12 support, presented stronger adsorption of TiCl4 than that of EB on (110) surface. Since the TIC14 and ethyl benzoate (EB) would compete to adsorb on the support surface, it seems reasonable to assume that TIC14 might predominately occupy this site, which can act as the most plausible active site for propylene polymerization. The first insertion of propylene monomer into the A5 active site model showed that it exhibited good regioselectivity but poor stereospecificity in the absence of electron donor.展开更多
The purpose of this paper is to consider the expected value of a discounted penalty due at ruin in the Erlang(2) risk process under constant interest force. An integro-differential equation satisfied by the expected...The purpose of this paper is to consider the expected value of a discounted penalty due at ruin in the Erlang(2) risk process under constant interest force. An integro-differential equation satisfied by the expected value and a second-order differential equation for the Laplace transform of the expected value are derived. In addition, the paper will present the recursive algorithm for the joint distribution of the surplus immediately before ruin and the deficit at ruin. Finally, by the differential equation, the defective renewal equation and the explicit expression for the expected value are given in the interest-free case.展开更多
Defect engineering has been used to develop low-cost and effective catalysts to boost oxygen reduction reactions.However,the development of catalysts that use metal cation vacancies as the active sites for oxygen redu...Defect engineering has been used to develop low-cost and effective catalysts to boost oxygen reduction reactions.However,the development of catalysts that use metal cation vacancies as the active sites for oxygen reduction reaction is lacking.In this study,ZnS nanoparticles on N-doped carbon serve as an oxygen reduction reaction catalyst.These catalysts were prepared via a one-step method at 900℃.Amazingly,the high-resolution transmission electron microscope image revealed obvious defects in the ZnS nanoparticles.These facilitated the catalyst synthesis,and the product displayed good electrocatalytic performance for the oxygen reduction reaction in an alkaline medium,including a lower onset potential,lower mid-wave potential,four electron transfer process,and better durability compared with 20 wt%Pt/C.More importantly,the density functional theory results indicated that using the Zn vacancies in the prepared catalyst as active sites required a lower reaction energy to produce OOH*from*OO toward oxygen reduction reaction.Therefore,the proposed catalyst with Zn vacancies can be used as a potential electrocatalyst and may be substitutes for Pt-based catalysts in fuel cells,given the novel catalyst’s resulting performance.展开更多
Both phototherapy via photocatalysts and physical puncture by artificial nanostructures are promising substitutes for antibiotics when treating drug-resistant bacterial infectious diseases.However,the photodynamic the...Both phototherapy via photocatalysts and physical puncture by artificial nanostructures are promising substitutes for antibiotics when treating drug-resistant bacterial infectious diseases.However,the photodynamic therapeutic efficacy of photocatalysts is seriously restricted by the rapid recombination of photogenerated electron-hole pairs.Meanwhile,the nanostructures of physical puncture are limited to two-dimensional(2D)platforms,and they cannot be fully used yet.Thus,this research developed a synergistic system of Ag_(3)PO_(4) nanoparticles(NPs),decorated with black urchin-like defective TiO_(2)(BU-TiO_(2-X)/Ag_(3)PO_(4)).These NPs had a decreased bandgap compared to BU-TiO_(2-X),and BU-TiO_(2)-X/Ag_(3)PO_(4)(3:1)exhibited the lowest bandgap and the highest separation efficiency for photogenerated electron-hole pairs.After combination with BU-TiO_(2-X),the photostability of Ag_(3)PO_(4) improved because the oxygen vacancy of BU-TiO_(2-X) retards the reduction of Ag^(+) in Ag_(3)PO_(4) into Ag^(0),thus reducing its toxicity.In addition,the nanospikes on the surface of BU-TiO_(2-X) can,from all directions,physically puncture bacterial cells,thus assisting the hybrid’s photodynamic therapeutic effects,alongside the small amount of Ag^(+) released from Ag_(3)PO_(4).This achieves synergy,endowing the hybrid with high antibacterial efficacy of 99.76±0.15%and 99.85±0.09%against Escherichia coli and Staphylococcus aureus,respectively,after light irradiation for 20 min followed by darkness for 12 h.It is anticipated that these findings may bring new insight for developing synergistic treatment strategies against bacterial infectious diseases or pathogenic bacterial polluted environments.展开更多
Single-atom catalysts(SACs)provide an oppor-tunity to elucidate the catalytic mechanism of complex reactions in heterogeneous catalysis.The low-temperature water-gas shift(WGS)reaction is an important industrial techn...Single-atom catalysts(SACs)provide an oppor-tunity to elucidate the catalytic mechanism of complex reactions in heterogeneous catalysis.The low-temperature water-gas shift(WGS)reaction is an important industrial technology to obtain high purity hydrogen.Herein,we study the catalytic activity of Pt1@Ti_(3)C_(2)T_(2)(T=O,S)SACs,where one subsurface Ti atom with three T vacancies in the functionalized Ti_(3)C_(2)T_(2)(T=O,S)MXene is substituted by one Pt atom,for the low-temperature show that Pt1@Ti_(3)C_(2)T_(2)provides an excellent platform for the WGS reaction by its bowl-shaped vacancy derived from the Pt1 single atom and three T defects surrounding it.Especially,Pt1@Ti_(3)C_(2)S_(2)SAC has higher catalytic performance for the WGS reaction,due to the weaker electronegativity of the S atom than the O atom,which significantly reduces the energy barrier of H*migration in the WGS reaction,which is often the rate-determining step.In the most favorable redox mechanism of the WGS reaction on Pt1@Ti_(3)C_(2)S_(2),the rate-determining step is the dissociation of OH*into O*and H*with the energy barrier as low as 1.12 eV.These results demonstrate that Pt1@Ti_(3)C_(2)S_(2)is promising in the application of MXenes for low-temperature WGS reactions.展开更多
基金This study was financially supported by the National Natural Science Foundation of China(Nos.51672064 and 51972089).
文摘Rare-earth tantalates and niobates(REjTaO7 and REjNbO7)have been considered as promising candidate thermal barrier coating(TBC)materials in next generation gas-turbine engines due to their ultra-low thermal conductivity and better thermal stability than yttria-stabilized zirconia(YSZ).However,the low Vickers hardness and toughness are the main shortcomings of RE;TaO-and REjNbOr that limit their applications as TBC materials.To increase the hardness,high entropy(Yu3Ybu3Er/3)sTaOr,(Y13YbnErns)NbO,and(Sm1/6Eu1/6Y 1/6Yb1/6Lu1/6Er1/6)3(Nb1/2Ta1/2)O7 are designed and synthesized in this study.These high entropy ceramics exhibit high Vickers hardness(10.912.0 GPa),close thermal expansion coefficients to that of single-principal-component RE3TaO,and RE;NbO,(7.9×10^-6-10.8×10-6 C-1 at room temperature),good phase stability,and good chemical compatibility with thermally grown Al2O3,which make them promising for applications as candidate TBC materials.
基金This research was financially supported by Youth Innovation Promotion Association(No.2014378)for Chinese Academy of Sciences.The authors are grateful to the constructive comments of the reviewers.
文摘High-entropy oxides(HEOs)are widely researched as potential materials for thermal barrier coatings(TBCs).However,the relatively low thermal expansion coefficient(TEC)of those materials severely restricts their practical application.In order to improve the poor thermal expansion property and further reduce the thermal conductivity,high-entropy(La_(0.2)Nd_(0.2)Sm_(0.2)Eu_(0.2)Gd_(0.2))_(2)Ce_(2)O_(7) is designed and synthesized in this work.The as-prepared multicomponent material is formed in a simple disordered fluorite structure due to the high-entropy stabilization effect.Notably,it exhibits a much higher TEC of approximately 12.0×10^(−6) K^(−1) compared with those of other high-entropy oxides reported in the field of TBCs.Besides,it presents prominent thermal insulation behavior with a low intrinsic thermal conductivity of 0.92 W·m^(−1)·K^(−1) at 1400℃,which can be explained by the existence of high concentration oxygen vacancies and highly disordered arrangement of multicomponent cations in the unique high-entropy configuration.Through high-temperature in-situ X-ray diffraction(XRD)measurement,this material shows excellent phase stability up to 1400℃.Benefiting from the solid solution strengthening effect,it shows a higher hardness of 8.72 GPa than the corresponding single component compounds.The superior thermo-physical performance above enables(La_(0.2)Nd_(0.2)Sm_(0.2)Eu_(0.2)Gd_(0.2))_(2)Ce_(2)O_(7) a promising TBC material.
基金supported by the National Nature Science Foundation of China,No.31770180the Youth Innovation Promotion Association CAS,No.2016303
文摘Hepatitis B virus(HBV) infection is a global public health concern. HBV causes chronic infection in patients and can lead to liver cirrhosis, hepatocellular carcinoma, and other severe liver diseases. Thus, understanding HBV-related pathogenesis is of particular importance for prevention and clinical intervention. HBV surface antigens are indispensable for HBV virion formation and are useful viral markers for diagnosis and clinical assessment. During chronic HBV infection, HBV genomes may acquire and accumulate mutations and deletions, leading to the expression of defective HBV surface antigens. These defective HBV surface antigens have been found to play important roles in the progression of HBV-associated liver diseases. In this review, we focus our discussion on the nature of defective HBV surface antigen mutations and their contribution to the pathogenesis of fulminant hepatitis B. The relationship between defective surface antigens and occult HBV infection are also discussed.
基金supported by the National Natural Science Foundation of China (91435206 31421005)+1 种基金National Key Technologies Research & Development ProgramSeven Major Crops Breeding Project (2016YFD0101803, 2016YFD0100404)the 948 project (2016-X33)
文摘RNA editing is a posttranscriptional process that is important in mitochondria and plastids of higher plants. All RNA editing-specific trans-factors reported so far belong to PLS-class of pentatricopeptide repeat(PPR)proteins. Here, we report the map-based cloning and molecular characterization of a defective kernel mutant dek39 in maize. Loss of Dek39 function leads to delayed embryogenesis and endosperm development, reduced kernel size, and seedling lethality. Dek39 encodes an E subclass PPR protein that targets to both mitochondria and chloroplasts, and is involved in RNA editing in mitochondrial NADH dehydrogenase3(nad3) at nad3-247 and nad3-275. C-to-U editing of nad3-275 is not conserved and even lost in Arabidopsis, consistent with the idea that no close DEK39 homologs are present in Arabidopsis. However, the amino acids generated by editing nad3-247 and nad3-275 are highly conserved in many other plant species, and the reductions of editing at these two sites decrease the activity of mitochondria NADH dehydrogenase complex I,indicating that the alteration of amino acid sequence is necessary for Nad3 function. Our results indicate that Dek39 encodes an E sub-class PPR protein that is involved in RNA editing of multiple sites and is necessary for seed development of maize.
基金supported by the National Natural Science Foundation of China (21573005, 21771009 and 21621061)the National Key Research and Development Program (2016YFB0701100)Beijing Natural Science Foundation (2162019)
文摘Ir-based dectrocatalysts have been system- atically studied for a variety of applications, among which the electrocatalysis for oxygen evolution reaction (OER) is one of the most prominent. The investigation on surface-micro- structure-sensitive catalytic activity in different pH media is of great significance for developing efficient electrocatalysts and corresponding mechanism research. Herein, shape-tunable Ir- Pd alloy nanocrystals, including nano-hollow-spheres (NHSs), nanowires (NWs), and nanotetrahedrons (NTs), are synthe- sized via a facile one-pot solvothermal method, Electro- chemical studies show that the OER activity of the Ir-Pd alloy nanocatalysts exhibits surface-microstructure-sensitive en- hancement in acidic and alkaline media. Ir-Pd NWs and NTs show more than five times higher mass activity than com- mercial Ir/C catalyst at an overpotential of 0.25 V in acidic and alkaline media. Post-XPS analyses reveal that surface Ir(VI) oxide generated at surface defective sites of Ir-Pd nanocata- lysts is a possible key intermediate for OER. In acidic medium, the specific activity of Ir-Pd nanocatalysts has a positive cor- relation with the surface roughness of NWs 〉 NHSs 〉 NTs. However, the strong dissociation of surface Ir(VI) species (IrO42-) at surface defective sites is a possible obstacle for the formation of Ir(VI) oxide, which reverses the activity sequence for OER in alkaline medium.
文摘The convergence problem of many Krylov subspace methods, e.g., FOM, GCR, GMRES and QMR, for solving large unsymmetric (non-Hermitian) linear systems is considered in a unified way when the coefficient matrix A is defective and its spectrum lies in the open right (left) half plane. Related theoretical error bounds are established and some intrinsic relationships between the convergence speed and the spectrum of A are exposed. It is shown that these methods are likely to converge slowly once one of the three cases occurs: A is defective, the distribution of its spectrum is not favorable, or the Jordan basis of A is ill conditioned. In the proof, some properties on the higher order derivatives of Chebyshev polynomials in an ellipse in the complex plane are derived, one of which corrects a result that has been used extensively in the literature.
文摘From the idea of failure of defective structures at high temperature beingcontrolled by two mechanisms: fast fracture due to creep crack growth initiating at the crack tipand creep rupture on the weakened section, a time-dependent failure assessment diagram (TDFAD) isdeveloped on the basis of the time dependent crack tip parameter J integral. According to theproposed TDFAD method, detailed crack initiation and creep crack growth analysis is avoided insafety assessments of high temperature structures by performing simple calculations of stressintensity factor and limit load. To evaluate the creep toughness parameter K_(mat), three differentexpressions are suggested on the basis of experimental load-line displacement, creep crackinitiation and growth parameters as well as the isochronous stress-strain curve. The influence ofservice factors such as temperature and service-time on the proposed TDFAD is discussed by using theproperties of 2.25CrlMo steel and an example is also presented to illustrate the approach.
基金supported by the Program of Introducing Talents of Discipline to Universities (B08021)Fundamental Research Funds for the Central Universities
文摘The formations of defective MgC12 surfaces, and subsequent adsorption of Ti species and electron donor, as well as propylene polymerization over the Ziegler-Natta catalyst have been investigated using density functional theory (DFT) method. Twelve possible support models of regular and defective MgC12 (110) and (100) surfaces were built. The individual adsorptions of titanium chlorides as mononuclear or dinuclear, and ethyl benzoate (EB) as electron donor, on these models were evaluated. The analysis of energies presented the cases of EB adsorption were generally more stable than titanium chlorides on both surfaces. Thus, EB as internal electron donor mainly prevented TIC14 from coordinating on the MgC12 surfaces where mostly non-stereospecific active sites could be formed. Exceptionally, A5 the site model with terminal Cl-vacancy on the MgC12 support, presented stronger adsorption of TiCl4 than that of EB on (110) surface. Since the TIC14 and ethyl benzoate (EB) would compete to adsorb on the support surface, it seems reasonable to assume that TIC14 might predominately occupy this site, which can act as the most plausible active site for propylene polymerization. The first insertion of propylene monomer into the A5 active site model showed that it exhibited good regioselectivity but poor stereospecificity in the absence of electron donor.
基金supported by the National Natural science Foundation of china(70271069)
文摘The purpose of this paper is to consider the expected value of a discounted penalty due at ruin in the Erlang(2) risk process under constant interest force. An integro-differential equation satisfied by the expected value and a second-order differential equation for the Laplace transform of the expected value are derived. In addition, the paper will present the recursive algorithm for the joint distribution of the surplus immediately before ruin and the deficit at ruin. Finally, by the differential equation, the defective renewal equation and the explicit expression for the expected value are given in the interest-free case.
基金supported by the National Natural Science Foundation of China(21865025)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT_15R46)
文摘Defect engineering has been used to develop low-cost and effective catalysts to boost oxygen reduction reactions.However,the development of catalysts that use metal cation vacancies as the active sites for oxygen reduction reaction is lacking.In this study,ZnS nanoparticles on N-doped carbon serve as an oxygen reduction reaction catalyst.These catalysts were prepared via a one-step method at 900℃.Amazingly,the high-resolution transmission electron microscope image revealed obvious defects in the ZnS nanoparticles.These facilitated the catalyst synthesis,and the product displayed good electrocatalytic performance for the oxygen reduction reaction in an alkaline medium,including a lower onset potential,lower mid-wave potential,four electron transfer process,and better durability compared with 20 wt%Pt/C.More importantly,the density functional theory results indicated that using the Zn vacancies in the prepared catalyst as active sites required a lower reaction energy to produce OOH*from*OO toward oxygen reduction reaction.Therefore,the proposed catalyst with Zn vacancies can be used as a potential electrocatalyst and may be substitutes for Pt-based catalysts in fuel cells,given the novel catalyst’s resulting performance.
基金This work is jointly supported by the National Science Fund for Distinguished Young Scholars 51925104National Natural Science Foundation of China nos.51871162,51671081,and 81870809,NSFC key program 51631007+2 种基金Natural Science Fund of Hubei Province,2018CFA064,RGC/NSFC(N_HKU725-1616)Hong Kong ITC(ITS/287/17,GHX/002/14SZ)Health and Medical Research Fund(No.03142446).
文摘Both phototherapy via photocatalysts and physical puncture by artificial nanostructures are promising substitutes for antibiotics when treating drug-resistant bacterial infectious diseases.However,the photodynamic therapeutic efficacy of photocatalysts is seriously restricted by the rapid recombination of photogenerated electron-hole pairs.Meanwhile,the nanostructures of physical puncture are limited to two-dimensional(2D)platforms,and they cannot be fully used yet.Thus,this research developed a synergistic system of Ag_(3)PO_(4) nanoparticles(NPs),decorated with black urchin-like defective TiO_(2)(BU-TiO_(2-X)/Ag_(3)PO_(4)).These NPs had a decreased bandgap compared to BU-TiO_(2-X),and BU-TiO_(2)-X/Ag_(3)PO_(4)(3:1)exhibited the lowest bandgap and the highest separation efficiency for photogenerated electron-hole pairs.After combination with BU-TiO_(2-X),the photostability of Ag_(3)PO_(4) improved because the oxygen vacancy of BU-TiO_(2-X) retards the reduction of Ag^(+) in Ag_(3)PO_(4) into Ag^(0),thus reducing its toxicity.In addition,the nanospikes on the surface of BU-TiO_(2-X) can,from all directions,physically puncture bacterial cells,thus assisting the hybrid’s photodynamic therapeutic effects,alongside the small amount of Ag^(+) released from Ag_(3)PO_(4).This achieves synergy,endowing the hybrid with high antibacterial efficacy of 99.76±0.15%and 99.85±0.09%against Escherichia coli and Staphylococcus aureus,respectively,after light irradiation for 20 min followed by darkness for 12 h.It is anticipated that these findings may bring new insight for developing synergistic treatment strategies against bacterial infectious diseases or pathogenic bacterial polluted environments.
基金We acknowledge the financial support from National Natural Science Foundation of China(21963005,22363001,21763006,and 22033005)the NSFC Center for Single-Atom Catalysis(22388102)+2 种基金the National Key R&D Project(2022YFA1503900 and 2022YFA1503000)the Natural Science Special Foundation of Guizhou University(No.202140)Guangdong Provincial Key Laboratory of Catalysis(No.2020B121201002).The calculations were performed using supercomputers at Shanghai Supercomputing Center and at the Center for Computational Science and Engineering of SUSTech.
文摘Single-atom catalysts(SACs)provide an oppor-tunity to elucidate the catalytic mechanism of complex reactions in heterogeneous catalysis.The low-temperature water-gas shift(WGS)reaction is an important industrial technology to obtain high purity hydrogen.Herein,we study the catalytic activity of Pt1@Ti_(3)C_(2)T_(2)(T=O,S)SACs,where one subsurface Ti atom with three T vacancies in the functionalized Ti_(3)C_(2)T_(2)(T=O,S)MXene is substituted by one Pt atom,for the low-temperature show that Pt1@Ti_(3)C_(2)T_(2)provides an excellent platform for the WGS reaction by its bowl-shaped vacancy derived from the Pt1 single atom and three T defects surrounding it.Especially,Pt1@Ti_(3)C_(2)S_(2)SAC has higher catalytic performance for the WGS reaction,due to the weaker electronegativity of the S atom than the O atom,which significantly reduces the energy barrier of H*migration in the WGS reaction,which is often the rate-determining step.In the most favorable redox mechanism of the WGS reaction on Pt1@Ti_(3)C_(2)S_(2),the rate-determining step is the dissociation of OH*into O*and H*with the energy barrier as low as 1.12 eV.These results demonstrate that Pt1@Ti_(3)C_(2)S_(2)is promising in the application of MXenes for low-temperature WGS reactions.