The Problem of Photovoltaic(PV)defects detection and classification has been well studied.Several techniques exist in identifying the defects and localizing them in PV panels that use various features,but suffer to ac...The Problem of Photovoltaic(PV)defects detection and classification has been well studied.Several techniques exist in identifying the defects and localizing them in PV panels that use various features,but suffer to achieve higher performance.An efficient Real-Time Multi Variant Deep learning Model(RMVDM)is presented in this article to handle this issue.The method considers different defects like a spotlight,crack,dust,and micro-cracks to detect the defects as well as loca-lizes the defects.The image data set given has been preprocessed by applying the Region-Based Histogram Approximation(RHA)algorithm.The preprocessed images are applied with Gray Scale Quantization Algorithm(GSQA)to extract the features.Extracted features are trained with a Multi Variant Deep learning model where the model trained with a number of layers belongs to different classes of neurons.Each class neuron has been designed to measure Defect Class Support(DCS).At the test phase,the input image has been applied with different operations,and the features extracted passed through the model trained.The output layer returns a number of DCS values using which the method identifies the class of defect and localizes the defect in the image.Further,the method uses the Higher-Order Texture Localization(HOTL)technique in localizing the defect.The pro-posed model produces efficient results with around 97%in defect detection and localization with higher accuracy and less time complexity.展开更多
文摘The Problem of Photovoltaic(PV)defects detection and classification has been well studied.Several techniques exist in identifying the defects and localizing them in PV panels that use various features,but suffer to achieve higher performance.An efficient Real-Time Multi Variant Deep learning Model(RMVDM)is presented in this article to handle this issue.The method considers different defects like a spotlight,crack,dust,and micro-cracks to detect the defects as well as loca-lizes the defects.The image data set given has been preprocessed by applying the Region-Based Histogram Approximation(RHA)algorithm.The preprocessed images are applied with Gray Scale Quantization Algorithm(GSQA)to extract the features.Extracted features are trained with a Multi Variant Deep learning model where the model trained with a number of layers belongs to different classes of neurons.Each class neuron has been designed to measure Defect Class Support(DCS).At the test phase,the input image has been applied with different operations,and the features extracted passed through the model trained.The output layer returns a number of DCS values using which the method identifies the class of defect and localizes the defect in the image.Further,the method uses the Higher-Order Texture Localization(HOTL)technique in localizing the defect.The pro-posed model produces efficient results with around 97%in defect detection and localization with higher accuracy and less time complexity.