There are rich natural gas resources in the northwestern South China Sea deepwater areas, with poor degree of exploration. Because of the unique tectonic, sedimentary background of the region, velocity model building ...There are rich natural gas resources in the northwestern South China Sea deepwater areas, with poor degree of exploration. Because of the unique tectonic, sedimentary background of the region, velocity model building and time-depth conversion have been an important and difficult problem for a long time. Recent researches in this direction have revealed three major problems for deepwater areas, i.e., the way to determine error correction for drilling velocity, the optimization of velocity modeling, and the understanding and analysis of velocity variations in the slope areas. The present contribution proposes technical solutions to the problems:(1) velocity correction version can be established by analyzing the geology, reservoir, water depths and velocity spectrum characteristics;(2) a unified method can be adopted to analyze the velocity variation patterns in drilled pale structural positions;and (3) across-layer velocity is analyzed to establish the velocity model individually for each of the layers. Such a solution is applicable, as shown in an example from the northwestern South China Sea deepwater areas, in which an improved prediction precision is obtained.展开更多
This paper studied an architecture model of turbidite channel systems based on the shallow- layer high resolution 3D seismic information in the deepwater area in the Niger Delta continental slope, West Africa as a pro...This paper studied an architecture model of turbidite channel systems based on the shallow- layer high resolution 3D seismic information in the deepwater area in the Niger Delta continental slope, West Africa as a prototype model. Different types of channel systems were identified and the corresponding architecture models were established. The controlling factors, evaluation criteria and spatial distribution of different channel systems were analyzed. This study shows that turbidite channel systems of West Africa could be classified into three types; confined, semi-confined and unconfined, according to the condition of canyon and the levees on both sides. Oil one hand, along the transport direction, channel system evolves from confined to unconfined. Within channel systems, channel complexes, including two types of incised and enveloped, are the most important reservoir bodies. On the other hand, there is a channel complex evolution from incised to enveloped vertically. The geological factors exert impacts of different levels on the architecture of the turbidite channels in different sedimentary systems or even within the same system.展开更多
In active rift basins, tectonism is extremely important for sequence stratigraphic patterns, affecting both the sequence architecture and internal makeup. Sequence stratigraphic framework of a Paleogene rift successio...In active rift basins, tectonism is extremely important for sequence stratigraphic patterns, affecting both the sequence architecture and internal makeup. Sequence stratigraphic framework of a Paleogene rift succession in Qiongdongnan Basin, northern South China Sea, was built using seismic profiles, complemented by well logs and cores. One first-order and three second-order sequences were identified on the basis of basin-scale unconformities, and seven third-order sequences are defined by unconformities along the basin margins and correlative conformities within the central basin. Through unconformity analysis and backstripping procedure, the Paleogene synrift tectonic evolution of deep- water area of Qiongdongnan Basin was proved to be episodic, which can be divided into rifting stage-I, rifting stage-II and rifting stage-III. Episodic rifting resulted in the formation of various types of struc- tural slope break belts, which controlled different architectures and internal makeup of sequences. This study enhances the understanding of the control of tectonic evolution on sequence stratigraphic pat- terns and establishes relevant patterns in a typical rift basin, and further proposes the favorable sand- stone reservoirs developing in different sequence stratigraphic patterns, which will be pretty helpful for subtle pool exploration in deepwater area of petroliferous basins.展开更多
基金The National Twelfth Five Major Projects Subject--the deepwater area of northern South China Sea,rich hydrocarbon generation potential sag evaluation under contract No.2011ZX05025-002
文摘There are rich natural gas resources in the northwestern South China Sea deepwater areas, with poor degree of exploration. Because of the unique tectonic, sedimentary background of the region, velocity model building and time-depth conversion have been an important and difficult problem for a long time. Recent researches in this direction have revealed three major problems for deepwater areas, i.e., the way to determine error correction for drilling velocity, the optimization of velocity modeling, and the understanding and analysis of velocity variations in the slope areas. The present contribution proposes technical solutions to the problems:(1) velocity correction version can be established by analyzing the geology, reservoir, water depths and velocity spectrum characteristics;(2) a unified method can be adopted to analyze the velocity variation patterns in drilled pale structural positions;and (3) across-layer velocity is analyzed to establish the velocity model individually for each of the layers. Such a solution is applicable, as shown in an example from the northwestern South China Sea deepwater areas, in which an improved prediction precision is obtained.
基金supported by Open Fund(PLC201203)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Chengdu University of Technology)National Science and Technology Major Project(2011ZX05030-005)Major Project of Education Department in Sichuan Province(13ZA0177)
文摘This paper studied an architecture model of turbidite channel systems based on the shallow- layer high resolution 3D seismic information in the deepwater area in the Niger Delta continental slope, West Africa as a prototype model. Different types of channel systems were identified and the corresponding architecture models were established. The controlling factors, evaluation criteria and spatial distribution of different channel systems were analyzed. This study shows that turbidite channel systems of West Africa could be classified into three types; confined, semi-confined and unconfined, according to the condition of canyon and the levees on both sides. Oil one hand, along the transport direction, channel system evolves from confined to unconfined. Within channel systems, channel complexes, including two types of incised and enveloped, are the most important reservoir bodies. On the other hand, there is a channel complex evolution from incised to enveloped vertically. The geological factors exert impacts of different levels on the architecture of the turbidite channels in different sedimentary systems or even within the same system.
基金supported by the National Science Foundation of China (NSFC) (Nos. 41272122, 41202074 and 41172123)the Major National Science and Technology Programs in the "Twelfth Five-Year" Plan of China (No. 2011ZX05009-002-02)+1 种基金the Open Research Program Foundation of Teaching Laboratory of China University of Geosciencesthe Foundation of Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences) of Ministry of Education (No. TPR-2013-14)
文摘In active rift basins, tectonism is extremely important for sequence stratigraphic patterns, affecting both the sequence architecture and internal makeup. Sequence stratigraphic framework of a Paleogene rift succession in Qiongdongnan Basin, northern South China Sea, was built using seismic profiles, complemented by well logs and cores. One first-order and three second-order sequences were identified on the basis of basin-scale unconformities, and seven third-order sequences are defined by unconformities along the basin margins and correlative conformities within the central basin. Through unconformity analysis and backstripping procedure, the Paleogene synrift tectonic evolution of deep- water area of Qiongdongnan Basin was proved to be episodic, which can be divided into rifting stage-I, rifting stage-II and rifting stage-III. Episodic rifting resulted in the formation of various types of struc- tural slope break belts, which controlled different architectures and internal makeup of sequences. This study enhances the understanding of the control of tectonic evolution on sequence stratigraphic pat- terns and establishes relevant patterns in a typical rift basin, and further proposes the favorable sand- stone reservoirs developing in different sequence stratigraphic patterns, which will be pretty helpful for subtle pool exploration in deepwater area of petroliferous basins.