A multibody system including a drilling riser system,tensioners and a floating platform is key equipment for offshore oil and gas drilling.Most of the previous studies only focus on the drilling riser system rather th...A multibody system including a drilling riser system,tensioners and a floating platform is key equipment for offshore oil and gas drilling.Most of the previous studies only focus on the drilling riser system rather than the multibody system.Mechanical characteristics of the deepwater drilling riser system cannot be analyzed accurately in a simplified model.Therefore,a three-dimensional multibody analysis program is developed.The static and dynamic characteristics of the deepwater drilling riser system under different platform motions are analyzed based on the developed program.The results show that the static displacement of the riser system with tensioners is smaller than that without tensioners,which means the tensioners can suppress the deformation of the riser system.Under surge and sway motions of the platform,the dynamic displacement of the riser system with tensioners is also smaller than that without tensioners due to the tensioner suppression effect.Besides,the heave motion induces a uniform axial vibration of the riser system,while roll and pitch motions excite the riser system to vibrate laterally.Compared with the stress amplitude due to surge and sway motions,the stress amplitude of the riser system due to heave,roll and pitch motions is relatively small but cannot be neglected.展开更多
The development of deepwater oil fields has reached a new stage with the dramatic increase in water depth and the recent increasing demands of the economic development in the filed. The use of a Tension Leg Platform ...The development of deepwater oil fields has reached a new stage with the dramatic increase in water depth and the recent increasing demands of the economic development in the filed. The use of a Tension Leg Platform (TIP) combined with other systems, such as Floating Production Storage and Offloading (FPSO) system, Floating Production Unit (FPU) system, Tender Assisted Drilling (TAD) system, etc., has drawn the industry attention and increased significantly in the past few years. For the areas lacking of pipeline system, the use of TIP(s) combined with FPSO has been chosen to efficiently develop the deepwater fields. The TIP with a Tender Assisted Drilling system significantly reduces the payload of the platform and reduces the investment in the TIP system substantially. This opens the door for many new deepwater field developments to use the tension leg platform. The advantage of the TIP combined with a TAD system is more significant when several TIPs are used for the continuous development of the field. One of the applications for the TIP with a tender assisted drilling system can be in the development of an offshore marginal field. Owing to the increase of water depth, the conventional fixed platform model for the exploration of those fields becomes uneconomical. It also would be too expensive to use a large TIP structure for those marginal fields due to the large amount of initial investment. The TIP system with tender assisted drilling can be used to develop those fields economically. There are many marginal fields in China offshore, especially in shelf areas. The application of this field developing model, combined with the existing field developing experience in China, will open the door for many marginal field developments. This paper will review the application of the combined TIP system through some examples of completed/ongoing projects, and major technical issues encountered in those practices. The potential application of this technology in China deepwater development will be di展开更多
基金This work was financially supported by National Natural Science Foundation of China(Grant No.51809279)Major National Science and Technology Program(Grant No.2016ZX05028-001-05)+3 种基金National Key R&D Program of China(Grant No.2017YFC0804500)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT14R58)the Fundamental Research Funds for the Central Universities(Grant No.20CX02302A)the Opening Fund of National Engineering Laboratory of Offshore Geophysical and Exploration Equipment(Grant No.20CX02302A)。
文摘A multibody system including a drilling riser system,tensioners and a floating platform is key equipment for offshore oil and gas drilling.Most of the previous studies only focus on the drilling riser system rather than the multibody system.Mechanical characteristics of the deepwater drilling riser system cannot be analyzed accurately in a simplified model.Therefore,a three-dimensional multibody analysis program is developed.The static and dynamic characteristics of the deepwater drilling riser system under different platform motions are analyzed based on the developed program.The results show that the static displacement of the riser system with tensioners is smaller than that without tensioners,which means the tensioners can suppress the deformation of the riser system.Under surge and sway motions of the platform,the dynamic displacement of the riser system with tensioners is also smaller than that without tensioners due to the tensioner suppression effect.Besides,the heave motion induces a uniform axial vibration of the riser system,while roll and pitch motions excite the riser system to vibrate laterally.Compared with the stress amplitude due to surge and sway motions,the stress amplitude of the riser system due to heave,roll and pitch motions is relatively small but cannot be neglected.
文摘The development of deepwater oil fields has reached a new stage with the dramatic increase in water depth and the recent increasing demands of the economic development in the filed. The use of a Tension Leg Platform (TIP) combined with other systems, such as Floating Production Storage and Offloading (FPSO) system, Floating Production Unit (FPU) system, Tender Assisted Drilling (TAD) system, etc., has drawn the industry attention and increased significantly in the past few years. For the areas lacking of pipeline system, the use of TIP(s) combined with FPSO has been chosen to efficiently develop the deepwater fields. The TIP with a Tender Assisted Drilling system significantly reduces the payload of the platform and reduces the investment in the TIP system substantially. This opens the door for many new deepwater field developments to use the tension leg platform. The advantage of the TIP combined with a TAD system is more significant when several TIPs are used for the continuous development of the field. One of the applications for the TIP with a tender assisted drilling system can be in the development of an offshore marginal field. Owing to the increase of water depth, the conventional fixed platform model for the exploration of those fields becomes uneconomical. It also would be too expensive to use a large TIP structure for those marginal fields due to the large amount of initial investment. The TIP system with tender assisted drilling can be used to develop those fields economically. There are many marginal fields in China offshore, especially in shelf areas. The application of this field developing model, combined with the existing field developing experience in China, will open the door for many marginal field developments. This paper will review the application of the combined TIP system through some examples of completed/ongoing projects, and major technical issues encountered in those practices. The potential application of this technology in China deepwater development will be di