期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于结构重参数化与多尺度深度监督的COVID-19胸部CT图像自动分割 被引量:5
1
作者 刘金平 吴娟娟 +1 位作者 张荣 徐鹏飞 《电子学报》 EI CAS CSCD 北大核心 2023年第5期1163-1171,共9页
基于深度学习模型的胸部CT(Computed Tomography)图像自动分割有助于辅助医生诊疗.但随着网络宽度与深度的加深,网络训练困难且推理减慢.为提高隐藏层的学习能力,深度监督机制被用于网络训练.但以往的深度监督方法没有考虑模型中多尺度... 基于深度学习模型的胸部CT(Computed Tomography)图像自动分割有助于辅助医生诊疗.但随着网络宽度与深度的加深,网络训练困难且推理减慢.为提高隐藏层的学习能力,深度监督机制被用于网络训练.但以往的深度监督方法没有考虑模型中多尺度特征图的分层表示以及上采样对参与损失计算的特征图质量的影响.为加强隐藏层学习过程的直接性同时加快网络推理,本文提出一种结构重参数化与多尺度深度监督分割网络(Structural Reparameterization and Multi-scale Deep Supervision Network,SR&MDS-Net),以实现COVID-19(COrona VIrus Disease 2019)胸部CT图像的高效准确分割.首先构建一种结构重参数化特征变异(Structure Reparameterized Featurev ariation,SRFV)模块将网络的训练与推理进行解耦,在提高模型表达能力的同时加快推理速度;然后,提出一种新颖的多尺度深度监督机制,以加强网络监督效果,提高网络性能.在公开的COVID-19胸部CT图像数据集上进行实验,SR&MDSNet的灵敏度、特异性、准确率、Dice分别达到了91.5%、99.5%、72.8%、80.1%,与同类其他方法比较,具有更优的性能. 展开更多
关键词 COVID-19 医学图像分割 深度学习 U-Net 结构重参数化 深度监督学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部