A laboratory experiment was carried out to extract iron from oolitic iron ore by a deep reduction and magnetic separation technique. The raw coal with fixed carbon of 66.54% was used as the reductant. The iron was suc...A laboratory experiment was carried out to extract iron from oolitic iron ore by a deep reduction and magnetic separation technique. The raw coal with fixed carbon of 66.54% was used as the reductant. The iron was successfully extracted from the oolitic iron ore which otherwise is nearly impossible to be separated due to its extremely fine-grain and mosaic nature. The results showed that an iron recovery rate of 90.78% and an iron content of 92.53~ of iron concentrate could be obtained by such a technique. The optimized roast temperature is 1 200℃ and time is 60 min. The subsequent magnetic separation was performed by using a magnetic field intensity of 111 kA · m^-1 and a grinding fineness less than 45 μm of 96. 19% for the sintered product.展开更多
The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,ir...The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,iron grade of 34.74%,and iron recovery of 80.44% could be obtained after magnetic separation under the conditions of reduction temperature of 1275℃,reduction time of 50 min,slag basicity of 1.0,carbon-containing coefficient of 2.5,and magnetic field strength of 72 kA/m.Reduction temperature and time affected the possibility of deep reduction and reaction progress.Slag basicity affected the composition of slag in burden and the spilling and enriching rate of nickel-iron from a matrix to form nickel-iron particles.Nickel-iron particles were generated,aggregated,and grew gradually in the reduction process.Nickel-iron particles can be effectively separated from gangue minerals by magnetic separation.展开更多
Due to environmental protection requirements,extraction of bioactive compounds from plant materials using environment-friendly green solvents has always been a research hotspot.And great efforts of scholars have been ...Due to environmental protection requirements,extraction of bioactive compounds from plant materials using environment-friendly green solvents has always been a research hotspot.And great efforts of scholars have been made in this direction,as well as environment-friendly solvents have been used to develop many innovative extraction techniques.Ionic liquids(ILs)and deep eutectic solvents(DESs)are two kinds of typical designable green solvents,which are potential replacements for traditional volatile organic solvents used for extracting.Under the substances action of inorganic salts or polymers,ILs/DESs can form an aqueous two-phase system(ATPS),which has obvious advantages for separating natural products.This paper discussed the phase separation principle of ILs/DESs-based ATPSs and reviewed the applications in the extraction of natural active molecules in recent years,as well as to promote the development of separation of the active constituents in Chinese materia medica.展开更多
In this study,we investigated the separation of iron and scandium from Sc-bearing red mud.The red mud object of our study contained 31.11 wt%total iron(TFe),0.0045 wt%Sc,hematite(Fe_(2)O_(3))and ferrosilite(FeO·S...In this study,we investigated the separation of iron and scandium from Sc-bearing red mud.The red mud object of our study contained 31.11 wt%total iron(TFe),0.0045 wt%Sc,hematite(Fe_(2)O_(3))and ferrosilite(FeO·SiO_(2))as the main Fe-bearing minerals.The Sc-bearing red mud was treated by a novel deep reduction roasting and magnetic separation process that includes the addition of coke and CaO to extract Fe and enriching Sc from the Sc-bearing red mud.The addition of coke and CaO enhances the transformation of hematite(Fe_(2)O_(3))to metallic iron(Fe~0)and magnetite(Fe_(3)O_(4))as well as the transformation of ferrosilite into metallic iron(Fe~0).The test results show that utilizing the new process a Fe concentrate with a TFe content of 81.22 wt%and Fe recovery of 92.96%was obtained.Furthermore,magnetic separation tailings with Sc content of 0.0062 wt%and Sc recovery of 98.65%were also obtained.The test results were achieved under the following process conditions:roasting temperature of 1373 K,roasting time of 45 min,calcium oxide dosage of 20 wt%,coke dosage of 25 wt%,grinding fineness of90%<0.04 mm,and magnetic field intensity of 0.24 T.The major minerals in the Fe concentrate are metallic iron(Fe~0)and magnetite(Fe_(3)O_(4)).The main minerals in the magnetic separation tailings with a low TFe content of 2.62%are CaO·SiO_(2),Na_(2)O·SiO_(2),FeO·SiO_(2),Ca_(3)Fe_(2)Si_(3)O_(12),CaAl_(2)SiO_6 and CaFe(SiO_(3))_(2).展开更多
基金Item Sponsored by National Natural Science Foundation of China(51074036)
文摘A laboratory experiment was carried out to extract iron from oolitic iron ore by a deep reduction and magnetic separation technique. The raw coal with fixed carbon of 66.54% was used as the reductant. The iron was successfully extracted from the oolitic iron ore which otherwise is nearly impossible to be separated due to its extremely fine-grain and mosaic nature. The results showed that an iron recovery rate of 90.78% and an iron content of 92.53~ of iron concentrate could be obtained by such a technique. The optimized roast temperature is 1 200℃ and time is 60 min. The subsequent magnetic separation was performed by using a magnetic field intensity of 111 kA · m^-1 and a grinding fineness less than 45 μm of 96. 19% for the sintered product.
基金Projects(51904058,51734005)supported by the National Natural Science Foundation of ChinaProject(2018YFC1901901902)supported by the National Key Research and Development Program of China
文摘The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,iron grade of 34.74%,and iron recovery of 80.44% could be obtained after magnetic separation under the conditions of reduction temperature of 1275℃,reduction time of 50 min,slag basicity of 1.0,carbon-containing coefficient of 2.5,and magnetic field strength of 72 kA/m.Reduction temperature and time affected the possibility of deep reduction and reaction progress.Slag basicity affected the composition of slag in burden and the spilling and enriching rate of nickel-iron from a matrix to form nickel-iron particles.Nickel-iron particles were generated,aggregated,and grew gradually in the reduction process.Nickel-iron particles can be effectively separated from gangue minerals by magnetic separation.
基金supported by National Natural Science Foundation of China(No.21864012)Jishou University National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides open item(No.DZL201801)Natural Science Innovation Project of Jishou University(No.Jdy20049)。
文摘Due to environmental protection requirements,extraction of bioactive compounds from plant materials using environment-friendly green solvents has always been a research hotspot.And great efforts of scholars have been made in this direction,as well as environment-friendly solvents have been used to develop many innovative extraction techniques.Ionic liquids(ILs)and deep eutectic solvents(DESs)are two kinds of typical designable green solvents,which are potential replacements for traditional volatile organic solvents used for extracting.Under the substances action of inorganic salts or polymers,ILs/DESs can form an aqueous two-phase system(ATPS),which has obvious advantages for separating natural products.This paper discussed the phase separation principle of ILs/DESs-based ATPSs and reviewed the applications in the extraction of natural active molecules in recent years,as well as to promote the development of separation of the active constituents in Chinese materia medica.
基金Project supported by the Sichuan Science and Technology Program(2022YFS0462,2021YJ0057,2021YFG0268)the China Postdoctoral Science Foundation(2014M560734)。
文摘In this study,we investigated the separation of iron and scandium from Sc-bearing red mud.The red mud object of our study contained 31.11 wt%total iron(TFe),0.0045 wt%Sc,hematite(Fe_(2)O_(3))and ferrosilite(FeO·SiO_(2))as the main Fe-bearing minerals.The Sc-bearing red mud was treated by a novel deep reduction roasting and magnetic separation process that includes the addition of coke and CaO to extract Fe and enriching Sc from the Sc-bearing red mud.The addition of coke and CaO enhances the transformation of hematite(Fe_(2)O_(3))to metallic iron(Fe~0)and magnetite(Fe_(3)O_(4))as well as the transformation of ferrosilite into metallic iron(Fe~0).The test results show that utilizing the new process a Fe concentrate with a TFe content of 81.22 wt%and Fe recovery of 92.96%was obtained.Furthermore,magnetic separation tailings with Sc content of 0.0062 wt%and Sc recovery of 98.65%were also obtained.The test results were achieved under the following process conditions:roasting temperature of 1373 K,roasting time of 45 min,calcium oxide dosage of 20 wt%,coke dosage of 25 wt%,grinding fineness of90%<0.04 mm,and magnetic field intensity of 0.24 T.The major minerals in the Fe concentrate are metallic iron(Fe~0)and magnetite(Fe_(3)O_(4)).The main minerals in the magnetic separation tailings with a low TFe content of 2.62%are CaO·SiO_(2),Na_(2)O·SiO_(2),FeO·SiO_(2),Ca_(3)Fe_(2)Si_(3)O_(12),CaAl_(2)SiO_6 and CaFe(SiO_(3))_(2).