期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
广义确定性标识网络 被引量:1
1
作者 杨冬 程宗荣 +4 位作者 田伟康 王洪超 张宏科 谭斌 赵志勇 《电子学报》 EI CAS CSCD 北大核心 2024年第1期1-18,共18页
随着智能制造、智能交通等重大国家战略实施,确定性成为信息网络尤其是行业专网的新焦点.现有确定性网络技术始终关注网络传输要素(带宽、时隙等)来保障数据流的确定性传输.然而,仅靠保障传输要素无法支撑新兴行业应用的多样化需求.例如... 随着智能制造、智能交通等重大国家战略实施,确定性成为信息网络尤其是行业专网的新焦点.现有确定性网络技术始终关注网络传输要素(带宽、时隙等)来保障数据流的确定性传输.然而,仅靠保障传输要素无法支撑新兴行业应用的多样化需求.例如,在算网融合场景,智算任务要求同时保障传输与计算要素的确定性来实现高性能通信;在绿色通信场景,需要考虑节点能量要素的确定性以维持网络稳定运行.针对上述需求,本文基于前期提出的标识网络技术,研究面向传输、计算、存储、能量等多要素的广义确定性网络.首先提出广义确定性标识网络架构,包括差异化服务层、异构融合网络层和智慧化适配层.差异化服务层和异构融合网络层,分别实现差异化确定性应用需求和异构化确定性网络要素的统一标识和描述,并通过标识解析映射实现确定性信息向智慧化适配层的统一封装和传递;智慧化适配层完成差异化确定性应用需求和异构化确定性网络要素的适配.现有确定性资源适配方法,即使仅考虑单一网络内的基本确定性要素,仍面临计算时间长、求解复杂性高、灵活度低等问题,为了支持更加复杂的多确定性要素、多种异构网络的协同适配,设计了基于深度强化学习的端到端的确定性调度(End-to-end Deterministic resource scheduling,E2eDet)算法,该算法可统一化、端到端地为混合数据流协同分配多种确定性网络资源,满足不同应用的差异化确定性需求.实验表明,E2eDet比DeepCQF和Random算法分别提升了28.4%和6.38倍数据流调度数量,同时E2eDet可以较好地权衡计算时间和调度能力. 展开更多
关键词 广义确定性网络 完备标识空间 网络体系架构 深度强化学习 网络资源调度
下载PDF
基于轻量化图注意力机制的露天矿卡车调度优化算法
2
作者 黄石 陈钊宇 曾蕾 《金属矿山》 CAS 北大核心 2024年第4期202-208,共7页
有效地管理和调度露天矿卡车,有助于大幅提升运输效率、降低矿山运营成本。现有研究聚焦于利用深度强化学习(Deep Reinforcement Learning,DRL)构建学习模型求解路径优化问题,然而,该模型针对Transformer架构的参数训练时,会产生大量参... 有效地管理和调度露天矿卡车,有助于大幅提升运输效率、降低矿山运营成本。现有研究聚焦于利用深度强化学习(Deep Reinforcement Learning,DRL)构建学习模型求解路径优化问题,然而,该模型针对Transformer架构的参数训练时,会产生大量参数冗余。为此,提出了一种轻量化图注意力机制的露天矿卡车调度优化算法。将微分方程数值解法——阿当姆斯(Adams)法用于Transformer模型的权重学习中,通过Adams的残差训练方法,可提高网络后期的优化精度,进一步压缩模型的规模,高效求解露天矿卡车调度优化问题。研究表明:该方法在降低最优间隙的同时将源模型的参数量压缩1/2,减少了对GPU设备的训练依赖。采用随机生成的露天矿卡数据集算例对该算法性能进行了验证,反映出采用Adams-Transformer模型有助于提升露天矿卡车调度效率。 展开更多
关键词 露天矿 卡车调度优化 阿当姆斯法 图注意力机制 深度强化学习
下载PDF
基于牵引控制的深度强化学习路由策略生成 被引量:6
3
作者 孙鹏浩 兰巨龙 +1 位作者 申涓 胡宇翔 《计算机研究与发展》 EI CSCD 北大核心 2021年第7期1563-1572,共10页
当前网络规模的高速增长带来网络流量复杂度的日益提高,增加了对流量特征精确建模的难度.近年来业界提出使用深度强化学习技术实现网络路由的智能化生成,一定程度上克服了人工进行流量分析和建模的缺点.然而,目前提出的解决方案普遍存... 当前网络规模的高速增长带来网络流量复杂度的日益提高,增加了对流量特征精确建模的难度.近年来业界提出使用深度强化学习技术实现网络路由的智能化生成,一定程度上克服了人工进行流量分析和建模的缺点.然而,目前提出的解决方案普遍存在可扩展性差等问题.对此,提出了一种基于牵引控制理论的深度强化学习路由策略生成技术Hierar-DRL,通过引入牵引控制理论并结合深度强化学习的自动策略搜索能力,提高了智能路由算法可扩展性.仿真实验结果表明:所提方案相比当前最优方案的端到端时延最多降低了28.5%,证明了所提智能路由方案的有效性. 展开更多
关键词 路由优化 软件定义网络 人工智能 深度强化学习 牵引控制
下载PDF
基于双延迟深度确定性策略梯度的船舶自主避碰方法 被引量:4
4
作者 刘钊 周壮壮 +1 位作者 张明阳 刘敬贤 《交通信息与安全》 CSCD 北大核心 2022年第3期60-74,共15页
为满足智能船舶自主航行的发展需求,解决基于强化学习的船舶避碰决策方法存在的学习效率低、泛化能力弱以及复杂会遇场景下鲁棒性差等问题,针对船舶避碰决策信息的高维性和动作的连续性等特点,考虑决策的合理性和实时性,研究了基于双延... 为满足智能船舶自主航行的发展需求,解决基于强化学习的船舶避碰决策方法存在的学习效率低、泛化能力弱以及复杂会遇场景下鲁棒性差等问题,针对船舶避碰决策信息的高维性和动作的连续性等特点,考虑决策的合理性和实时性,研究了基于双延迟深度确定性策略梯度(TD3)的船舶自主避碰方法。根据船舶间相对运动信息与碰撞危险信息,从全局角度构建具有连续多时刻目标船信息的状态空间;依据船舶操纵性设计连续决策动作空间;综合考虑目标导向、航向保持、碰撞危险、《1972年国际海上避碰规则》(COLREGs)和良好船艺等因素,设计船舶运动的奖励函数;基于TD3算法,根据状态空间结构,结合长短期记忆(LSTM)网络和一维卷积网络,利用Actor-Critic结构设计船舶自主避碰网络模型,利用双价值网络学习、目标策略平滑以及策略网络延迟更新等方式稳定网络训练,利用跳帧以及批量大小和迭代更新次数动态增大等方式加速网络训练;为解决模型泛化能力弱的问题,提出基于TD3的船舶随机会遇场景训练流程,实现自主避碰模型应用的多场景迁移。运用训练得到的船舶自主避碰模型进行仿真验证,并与改进人工势场(APF)算法进行比较,结果表明:所提方法学习效率高,收敛快速平稳;训练得到的自主避碰模型在2船和多船会遇场景下均能使船舶在安全距离上驶过,并且在复杂会遇场景中比改进APF算法避碰成功率高,避让2~4艘目标船时成功率高达99.233%,5~7艘目标船时成功率97.600%,8~10艘目标船时成功率94.166%;所提方法能有效应对来船的不协调行动,避碰实时性高,决策安全合理,航向变化快速平稳、震荡少、避碰路径光滑,比改进APF方法性能更强。 展开更多
关键词 交通信息工程 船舶避碰 智能决策 深度强化学习 双延迟深度确定性策略梯度
下载PDF
基于MADDPG算法的家用电动汽车集群充放电行为在线优化 被引量:5
5
作者 戴武昌 刘艾冬 +2 位作者 申鑫 马鸿君 张虹 《东北电力大学学报》 2021年第5期80-89,共10页
电动汽车作为电网中的重要负荷,具有较高的需求响应潜力.为降低电动汽车集群用能成本,缓解电网峰值负荷压力,文中首先分析了V2G模式下电动汽车的用电特性,构建了电动汽车集群充放电调度模型,通过成本分析为充放电调度提供决策依据.然后... 电动汽车作为电网中的重要负荷,具有较高的需求响应潜力.为降低电动汽车集群用能成本,缓解电网峰值负荷压力,文中首先分析了V2G模式下电动汽车的用电特性,构建了电动汽车集群充放电调度模型,通过成本分析为充放电调度提供决策依据.然后应用多智能体深度确定性策略梯度(Multi-Agent Deep Deterministic Policy Gradient,MADDPG)算法对电动汽车集群进行充放电行为的实时优化,利用用户的历史用电数据完成学习过程,并依据当前的用电信息进行调度决策.算例分析表明,该方法可以进行电动汽车集群充放电行为的实时在线优化决策,在保证用户用电需求的前提下,提高用户用电经济性,实现峰值负荷的转移. 展开更多
关键词 电动汽车充电调度 需求响应 多智能体深度强化学习 在线优化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部