期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络的交通标志识别方法 被引量:2
1
作者 申元 赵芸 《浙江科技学院学报》 CAS 2021年第1期16-23,共8页
交通标志识别在自动驾驶过程中起着十分重要的作用。为了解决识别精度低的问题,提出一种基于卷积神经网络的识别方法,通过改进深度相互学习网络完成对交通标志的识别,使用ResNet-19网络作为特征提取部分,使用全局平均池化层作为分类器部... 交通标志识别在自动驾驶过程中起着十分重要的作用。为了解决识别精度低的问题,提出一种基于卷积神经网络的识别方法,通过改进深度相互学习网络完成对交通标志的识别,使用ResNet-19网络作为特征提取部分,使用全局平均池化层作为分类器部分,使用交叉熵损失和相对熵损失作为损失函数部分,并增加超参数α与δ来衡量这两个损失在训练中的权重;同时,引入一种使用不同初始值的批量归一化层训练的技巧,以此来提高模型的收敛速度。试验研究中,改进的方法用在德国交通标志识别测试集上达到了98.90%的识别精度,比改进前精度提高了2.17%,与目前优秀的交通标志识别模型相比,本方法精度仍有一定的提高。试验结果表明在复杂的环境中,本方法可以准确地识别交通标志,这为后续相关研究提供了良好的技术支持。 展开更多
关键词 交通标志识别 深度相互学习网络 批量归一化 全局平均池化 权重损失
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部