期刊文献+
共找到79篇文章
< 1 2 4 >
每页显示 20 50 100
高分辨率光学遥感场景分类的深度度量学习方法 被引量:21
1
作者 叶利华 王磊 +2 位作者 张文文 李永刚 王赠凯 《测绘学报》 EI CSCD 北大核心 2019年第6期698-707,共10页
针对高分辨率光学遥感影像场景具有同类型内部差异大、不同类型间相似度高导致部分场景识别困难的问题,本文提出了一种深度度量学习方法。首先在深度学习模型的特征输出层上为每类预设聚类中心,其次基于欧氏距离方法设计均值中心度量损... 针对高分辨率光学遥感影像场景具有同类型内部差异大、不同类型间相似度高导致部分场景识别困难的问题,本文提出了一种深度度量学习方法。首先在深度学习模型的特征输出层上为每类预设聚类中心,其次基于欧氏距离方法设计均值中心度量损失项,最后联合交叉熵损失项以及权重与偏置正则项构成模型的损失函数。该方法的目标是在特征空间上使同类型特征聚集并扩大类型间的距离以提高分类准确率。试验结果表明,本文方法有效地提升了分类准确率。在RSSCN7、UC Merced和NWPU-RESISC45数据集上,与现有方法相比,分类准确率分别提高了1.46%、1.09%和2.51%。 展开更多
关键词 深度学习 度量学习 均值中心度量损失 遥感影像 场景分类
下载PDF
深度对比学习综述 被引量:14
2
作者 张重生 陈杰 +3 位作者 李岐龙 邓斌权 王杰 陈承功 《自动化学报》 EI CAS CSCD 北大核心 2023年第1期15-39,共25页
在深度学习中,如何利用大量、易获取的无标注数据增强神经网络模型的特征表达能力,是一个具有重要意义的研究问题,而对比学习是解决该问题的有效方法之一,近年来得到了学术界的广泛关注,涌现出一大批新的研究方法和成果.本文综合考察对... 在深度学习中,如何利用大量、易获取的无标注数据增强神经网络模型的特征表达能力,是一个具有重要意义的研究问题,而对比学习是解决该问题的有效方法之一,近年来得到了学术界的广泛关注,涌现出一大批新的研究方法和成果.本文综合考察对比学习近年的发展和进步,提出一种新的面向对比学习的归类方法,该方法将现有对比学习方法归纳为5类,包括:1)样本对构造;2)图像增广;3)网络架构;4)损失函数;5)应用.基于提出的归类方法,对现有对比研究成果进行系统综述,并评述代表性方法的技术特点和区别,系统对比分析现有对比学习方法在不同基准数据集上的性能表现.本文还将梳理对比学习的学术发展史,并探讨对比学习与自监督学习、度量学习的区别和联系.最后,本文将讨论对比学习的现存挑战,并展望未来发展方向和趋势. 展开更多
关键词 对比学习 深度学习 特征提取 自监督学习 度量学习
下载PDF
智能视频监控关键技术:行人再识别研究综述 被引量:17
3
作者 赵才荣 齐鼎 +6 位作者 窦曙光 涂远鹏 孙添力 柏松 蒋忻洋 白翔 苗夺谦 《中国科学:信息科学》 CSCD 北大核心 2021年第12期1979-2015,共37页
行人再识别(person re-identification,ReID)旨在解决跨摄像头跨场景下目标行人的关联与匹配,作为智能视频监控系统的关键环节,对维护社会公共秩序具有重大作用.为了深入了解行人再识别研究现状和加速推进国内行人再识别相关研究及技术... 行人再识别(person re-identification,ReID)旨在解决跨摄像头跨场景下目标行人的关联与匹配,作为智能视频监控系统的关键环节,对维护社会公共秩序具有重大作用.为了深入了解行人再识别研究现状和加速推进国内行人再识别相关研究及技术落地,本文对该领域国家自然科学基金申报数量、资助力度以及地理分布情况进行统计,并针对近年来发表在国际顶级会议和期刊上的行人再识别研究进行全面梳理.具体地,首先阐述一个标准行人再识别算法流程,并总结其中3个关键技术:表征学习、度量学习和重排序优化.随后,列举了实际开放场景中面临的主要难点与挑战,并据此概括了7种开放行人再识别任务:遮挡、无监督、半监督、跨模态、场景行人搜索、对抗鲁棒和快速检索.此外,本文整理了标准行人再识别和开放行人再识别的代表性数据集,并且对一些代表性行人再识别算法进行比较.最后本文对行人再识别的未来发展趋势进行展望. 展开更多
关键词 行人再识别 智能视频分析 深度学习 表征学习 度量学习
原文传递
车辆再识别技术综述 被引量:17
4
作者 刘凯 李浥东 林伟鹏 《智能科学与技术学报》 2020年第1期10-25,共16页
车辆再识别是指给定一张车辆图像,找出其他摄像头拍摄的同一车辆,可将车辆再识别问题看作图像检索的子问题。在真实交通监控系统中,车辆再识别可以起到对目标车辆进行定位、监管、刑侦的作用。随着深度神经网络的兴起和大型数据集的提出... 车辆再识别是指给定一张车辆图像,找出其他摄像头拍摄的同一车辆,可将车辆再识别问题看作图像检索的子问题。在真实交通监控系统中,车辆再识别可以起到对目标车辆进行定位、监管、刑侦的作用。随着深度神经网络的兴起和大型数据集的提出,提升车辆再识别的准确度成为近年来计算机视觉和多媒体领域的研究热点。从不同角度对车辆再识别方法进行了分类,并从特征提取、方法设计和性能表现等方面对车辆再识别技术进行了概述、比较和分析,对车辆再识别技术面临的挑战及发展趋势进行了预测。 展开更多
关键词 车辆再识别 深度学习 特征表达 度量学习
下载PDF
基于深度卷积神经网络与中心损失的人脸识别 被引量:16
5
作者 张延安 王宏玉 徐方 《科学技术与工程》 北大核心 2017年第35期92-97,共6页
传统人脸识别方法手工设计特征过程复杂、识别率较低,对于开集人脸识别通用深度学习分类模型特征判别能力较弱。针对这两方面的不足,提出了一种以分类损失与中心损失相结合作为模型训练监督信号的深度卷积神经网络。首先,利用构建的应... 传统人脸识别方法手工设计特征过程复杂、识别率较低,对于开集人脸识别通用深度学习分类模型特征判别能力较弱。针对这两方面的不足,提出了一种以分类损失与中心损失相结合作为模型训练监督信号的深度卷积神经网络。首先,利用构建的应用场景数据集优调从公共数据集获得初始化参数的深度人脸识别模型,解决训练数据过小和数据分布差异问题,同时提高模型训练速度;然后,以传统损失函数和新的中心损失作为迁移学习过程中的监督信号,使得类内聚合、类间分散,提高模型输出人脸特征的判别能力;最后,对人脸特征进行主成分分析,进一步去除冗余特征,降低特征复杂度,提高人脸识别准确率。实验结果表明,与传统人脸识别算法相比该算法可以自动进行特征提取,并且相对于通用深度学习分类模型该算法通过度量学习使特征表示更具判别力。在自建测试集和LFW、YouTube Faces标准测试集上都取得了较高的识别率。 展开更多
关键词 人脸识别 卷积神经网络 深度学习 中心损失 度量学习 主成分分析
下载PDF
小样本图像分类研究综述 被引量:10
6
作者 安胜彪 郭昱岐 +1 位作者 白宇 王腾博 《计算机科学与探索》 CSCD 北大核心 2023年第3期511-532,共22页
近年来,借助大规模数据集和庞大的计算资源,以深度学习为代表的人工智能算法在诸多领域取得成功。其中计算机视觉领域的图像分类技术蓬勃发展,并涌现出许多成熟的视觉任务分类模型。这些模型均需要利用大量的标注样本进行训练,但在实际... 近年来,借助大规模数据集和庞大的计算资源,以深度学习为代表的人工智能算法在诸多领域取得成功。其中计算机视觉领域的图像分类技术蓬勃发展,并涌现出许多成熟的视觉任务分类模型。这些模型均需要利用大量的标注样本进行训练,但在实际场景中因诸多限制导致数据量稀少,往往很难获得相应规模的高质量标注样本。因此如何使用少量样本进行学习已经逐渐成为当前的研究热点。针对分类任务系统梳理了当前小样本图像分类的相关工作,小样本学习主要采用元学习、度量学习和数据增强等深度学习方法。从有监督、半监督和无监督等层次归纳总结了小样本图像分类的研究进展和典型技术模型,以及这些模型方法在若干公共数据集上的表现,并从机制、优势、局限性等方面进行了对比分析。最后,讨论了当前小样本图像分类面临的技术难点以及未来的发展趋势。 展开更多
关键词 深度学习 监督学习 元学习 度量学习 图像分类
下载PDF
深度度量学习综述 被引量:12
7
作者 刘冰 李瑞麟 封举富 《智能系统学报》 CSCD 北大核心 2019年第6期1064-1072,共9页
深度度量学习已成为近年来机器学习最具吸引力的研究领域之一,如何有效的度量物体间的相似性成为问题的关键。现有的依赖成对或成三元组的损失函数,由于正负样本可组合的数量极多,因此一种合理的解决方案是仅对训练有意义的正负样本采样... 深度度量学习已成为近年来机器学习最具吸引力的研究领域之一,如何有效的度量物体间的相似性成为问题的关键。现有的依赖成对或成三元组的损失函数,由于正负样本可组合的数量极多,因此一种合理的解决方案是仅对训练有意义的正负样本采样,也称为“难例挖掘”。为减轻挖掘有意义样本时的计算复杂度,代理损失设置了数量远远小于样本集合的代理点集。该综述按照时间顺序,总结了深度度量学习领域比较有代表性的算法,并探讨了其与softmax分类的联系,发现两条看似平行的研究思路,实则背后有着一致的思想。进而文章探索了许多致力于提升softmax判别性能的改进算法,并将其引入到度量学习中,从而进一步缩小类内距离、扩大类间距,提高算法的判别性能。 展开更多
关键词 深度度量学习 深度学习 机器学习 对比损失 三元组损失 代理损失 softmax分类 温度值
下载PDF
基于多尺度深度学习的商品图像检索 被引量:12
8
作者 周晔 张军平 《计算机研究与发展》 EI CSCD 北大核心 2017年第8期1824-1832,共9页
商品图像检索的目标是检索与图像内容相符的商品,它是移动视觉搜索在电子商务中的重要应用.商品图像检索的发展,既为用户购物提供便利,又促进了电子商务向移动端发展.图像特征是影响商品图片检索性能的重要因素.复杂的图片背景、同类商... 商品图像检索的目标是检索与图像内容相符的商品,它是移动视觉搜索在电子商务中的重要应用.商品图像检索的发展,既为用户购物提供便利,又促进了电子商务向移动端发展.图像特征是影响商品图片检索性能的重要因素.复杂的图片背景、同类商品之间的相似性和被拍摄商品尺度的变化,都使得商品图像检索对图像特征提出了更高的要求.提出了一种多尺度深度神经网络,以便于抽取对复杂图片背景和目标物体尺度变化更加鲁棒的图像特征.同时根据商品类别标注信息学习图片之间的相似度.针对在线服务对响应速度的要求,通过压缩模型的深度和宽度控制了计算开销.在一个百万级的商品图片数据集上的对比实验证明:该方法在保持速度的同时提升了查询的准确率. 展开更多
关键词 商品图像检索 深度学习 多尺度 度量学习 模型压缩
下载PDF
基于深度学习的少样本研究综述 被引量:9
9
作者 卢依宏 蔡坚勇 +1 位作者 郑华 曾远强 《电讯技术》 北大核心 2021年第1期125-130,共6页
基于大数据的深度学习算法越来越完善,然而如何解决训练样本数非常少的情况,是目前神经网络研究领域中一个非常重要且极具挑战的问题。首先,介绍了少样本问题的定义;接着将现有的少样本学习方法分为数据增强、度量学习和元学习三类,分... 基于大数据的深度学习算法越来越完善,然而如何解决训练样本数非常少的情况,是目前神经网络研究领域中一个非常重要且极具挑战的问题。首先,介绍了少样本问题的定义;接着将现有的少样本学习方法分为数据增强、度量学习和元学习三类,分别从方法所用模型、数据集以及相应的实验结果进行分析;最后,总结了现有方法的不足,探讨了未来少样本研究的方向。 展开更多
关键词 深度神经网络 少样本学习 数据增强 度量学习 元学习
下载PDF
基于深度学习的多目标跟踪关联模型设计 被引量:8
10
作者 侯建华 张国帅 项俊 《自动化学报》 EI CSCD 北大核心 2020年第12期2690-2700,共11页
近年来,深度学习在计算机视觉领域的应用取得了突破性进展,但基于深度学习的视频多目标跟踪(Multiple object tracking, MOT)研究却相对甚少,而鲁棒的关联模型设计是基于检测的多目标跟踪方法的核心.本文提出一种基于深度神经网络和度... 近年来,深度学习在计算机视觉领域的应用取得了突破性进展,但基于深度学习的视频多目标跟踪(Multiple object tracking, MOT)研究却相对甚少,而鲁棒的关联模型设计是基于检测的多目标跟踪方法的核心.本文提出一种基于深度神经网络和度量学习的关联模型:采用行人再识别(Person re-identification, Re-ID)领域中广泛使用的度量学习技术和卷积神经网络(Convolutional neural networks, CNNs)设计目标外观模型,即利用三元组损失函数设计一个三通道卷积神经网络,提取更具判别性的外观特征构建目标外观相似度;再结合运动模型计算轨迹片间的关联概率.在关联策略上,采用匈牙利算法,首先以逐帧关联方式得到短小可靠的轨迹片集合,再通过自适应时间滑动窗机制多级关联,输出各目标最终轨迹.在2DMOT2015、MOT16公开数据集上的实验结果证明了所提方法的有效性,与当前一些主流算法相比较,本文方法取得了相当或者领先的跟踪效果. 展开更多
关键词 多目标跟踪 深度学习 度量学习 关联模型 多级关联
下载PDF
基于跨模态深度度量学习的甲骨文字识别 被引量:8
11
作者 张颐康 张恒 +1 位作者 刘永革 刘成林 《自动化学报》 EI CAS CSCD 北大核心 2021年第4期791-800,共10页
甲骨文字图像可以分为拓片甲骨文字与临摹甲骨文字两类.拓片甲骨文字图像是从龟甲、兽骨等载体上获取的原始拓片图像,临摹甲骨文字图像是经过专家手工书写得到的高清图像.拓片甲骨文字样本难以获得,而临摹文字样本相对容易获得.为了提... 甲骨文字图像可以分为拓片甲骨文字与临摹甲骨文字两类.拓片甲骨文字图像是从龟甲、兽骨等载体上获取的原始拓片图像,临摹甲骨文字图像是经过专家手工书写得到的高清图像.拓片甲骨文字样本难以获得,而临摹文字样本相对容易获得.为了提高拓片甲骨文字识别的性能,本文提出一种基于跨模态深度度量学习的甲骨文字识别方法,通过对临摹甲骨文字和拓片甲骨文字进行共享特征空间建模和最近邻分类,实现了拓片甲骨文字的跨模态识别.实验结果表明,在拓片甲骨文字识别任务上,本文提出的跨模态学习方法比单模态方法有明显的提升,同时对新类别拓片甲骨文字也能增量识别. 展开更多
关键词 甲骨文字识别 深度度量学习 最近邻分类 跨模态学习
下载PDF
一种基于Triplet loss的齿轮箱复合故障识别方法 被引量:8
12
作者 赵晓平 王逸飞 +2 位作者 张永宏 吴家新 王丽华 《振动与冲击》 EI CSCD 北大核心 2021年第5期46-54,共9页
随着设备检测点的数量与采样频率的增加,机械健康监测进入了"大数据"时代。深度学习以其强大的自适应特征提取和分类能力也在机械大数据处理方面取得了丰硕的成果。在故障诊断领域,目前深度学习方法的研究对象均集中于单一故... 随着设备检测点的数量与采样频率的增加,机械健康监测进入了"大数据"时代。深度学习以其强大的自适应特征提取和分类能力也在机械大数据处理方面取得了丰硕的成果。在故障诊断领域,目前深度学习方法的研究对象均集中于单一故障,而复合故障却鲜有人涉足。复合故障因为其各类故障信号间有耦合,变化的工况(负载,转速)也会对信号产生较大影响,所以难以准确诊断。面对复杂的复合故障,传统的Softmax分类器已不能精确高效的完成故障诊断。提出了一种基于Triplet loss的深度度量学习模型的诊断方法,对齿轮箱的轴承及齿轮这两种目标的故障同时进行诊断。其优势在于通过该模型提取故障信号的特征,再利用Triplet loss度量各类故障之间的距离,使得同类故障特征间的距离很近,异类故障特征间的距离很远,从而高效完成诊断任务。试验结果表明,该方法实现了在多种工况,大量样本下对齿轮箱内轴承和齿轮不同故障的准确诊断。 展开更多
关键词 机械故障诊断 深度度量学习 齿轮箱 轴承 齿轮
下载PDF
面向电力生产精细化风险解译的高度相似防护工具智能检测技术研究 被引量:2
13
作者 马富齐 王波 +2 位作者 董旭柱 冯磊 贾嵘 《中国电机工程学报》 EI CSCD 北大核心 2024年第3期971-980,I0010,共11页
电力生产通常面临高低电压、强弱电流等复杂工作环境转换,不同作业场景有严格的防护工具使用标准,因此,研究生产作业过程防护工具的精细辨识对保障人员安全及电网安全意义重大。已有研究可实现安全帽、工作服等基础着装类检测,而实际生... 电力生产通常面临高低电压、强弱电流等复杂工作环境转换,不同作业场景有严格的防护工具使用标准,因此,研究生产作业过程防护工具的精细辨识对保障人员安全及电网安全意义重大。已有研究可实现安全帽、工作服等基础着装类检测,而实际生产中存在大量形态高度相似的实体防护工具,如绝缘手套与线手套、绝缘杆与验电杆等。为此,该文提出一种基于深度代表性度量学习的相似防护工具智能检测方法。将目标类别特征学习转换为以差异化表达不同目标特征距离为目的的嵌入式空间特征学习,得到表征不同目标的深度代表性特征向量,通过计算未知目标与代表性特征向量的距离进行类别判断,最后以现场图像进行试验验证。试验结果表明:所提方法实现了对形态相似防护工具的特征差异表达和精准辨识,相比于常见目标检测模型具有更优越的辨识性能,从而提高电力生产安全风险辨识的精细化水平。 展开更多
关键词 生产安全防护 安全影像解译 电力深度视觉 高度相似目标 深度度量学习 嵌入特征空间
下载PDF
行人重识别研究综述 被引量:6
14
作者 王素玉 肖塞 《北京工业大学学报》 CAS CSCD 北大核心 2022年第10期1100-1112,共13页
行人重识别的目的是在多个不重叠的摄像头之间检索特定的行人.对目前有代表性的基于深度学习的行人重识别算法进行归纳和总结,综述不同类型的行人重识别算法的结构和特点.首先,介绍行人重识别的概念;其次,根据行人重识别算法的特点,概... 行人重识别的目的是在多个不重叠的摄像头之间检索特定的行人.对目前有代表性的基于深度学习的行人重识别算法进行归纳和总结,综述不同类型的行人重识别算法的结构和特点.首先,介绍行人重识别的概念;其次,根据行人重识别算法的特点,概述基于监督学习和弱监督学习的行人重识别算法,并对特征表示学习和深度度量学习2种基于监督学习的行人重识别算法进行详细讨论;然后,介绍这一领域的经典数据集,对有代表性的算法在这些数据集上的表现进行对比分析;最后,展望行人重识别领域的发展方向. 展开更多
关键词 深度学习 行人重识别 度量学习 注意力机制 生成对抗网络 弱监督学习
下载PDF
基于度量学习的多模态谣言检测
15
作者 李娜 余晓栋 朱节中 《国外电子测量技术》 2024年第8期54-63,共10页
目前主流的多模态谣言检测模型,主要侧重于建模过程中模态的特征提取与拼接方法研究,而各模态局部特征关系、模态内与模态间的信息交互往往被忽略,这在一定程度上影响到了谣言检测的效果。针对该问题,提出了一种基于度量学习的多模态谣... 目前主流的多模态谣言检测模型,主要侧重于建模过程中模态的特征提取与拼接方法研究,而各模态局部特征关系、模态内与模态间的信息交互往往被忽略,这在一定程度上影响到了谣言检测的效果。针对该问题,提出了一种基于度量学习的多模态谣言检测方法。考虑到各模态局部特征关系对模态整体特征表示的影响,采用了句法分析和注意力机制技术分别挖掘文本和图片的局部特征关系;同时,将度量学习应用到谣言检测中,通过三元组学习和对比学习找出模态内与模态间的关联信息。在Twitter和Weibo两个公开的数据集上进行了性能测试实验,准确率分别达到92.8%和85.2%,结果表明将各模态局部特征关系、模态内与模态间的信息交互加入谣言检测模型中能够进一步提升谣言检测的精准度。 展开更多
关键词 谣言检测 度量学习 多模态 三元组学习 对比学习
下载PDF
基于深度度量学习的轴承故障诊断方法 被引量:7
16
作者 李小娟 徐增丙 +2 位作者 熊文 王志刚 谭俊杰 《振动与冲击》 EI CSCD 北大核心 2020年第15期25-31,共7页
针对机械大数据因故障类内离散度和类间相似度较大而导致诊断精度低的问题,提出一种深度度量学习故障诊断方法,采用深度神经网络(Deep Neural Network, DNN)对故障特征进行自适应提取,并利用基于欧氏距离的边际Fisher分析(Marginal Fish... 针对机械大数据因故障类内离散度和类间相似度较大而导致诊断精度低的问题,提出一种深度度量学习故障诊断方法,采用深度神经网络(Deep Neural Network, DNN)对故障特征进行自适应提取,并利用基于欧氏距离的边际Fisher分析(Marginal Fisher Analysis, MFA)方法进行了优选,在构建的深度度量网络(Deep Metric Network, DMN)顶层特征输出层添加BPNN(Back Propagation Neural Network, BPNN)分类器对网络参数进行微调,并实现故障的分类识别。通过对不同类型和严重程度的轴承故障进行了诊断分析,验证了该方法可以有效地对轴承故障进行高精度诊断,效果优于传统深度信念网络(Deep Belief Network, DBN)故障诊断方法以及常用时域统计特征结合支持向量机(Support Vector Machine, SVM)分类的故障诊断方法。 展开更多
关键词 深度度量学习 轴承 故障诊断 相似度
下载PDF
基于去偏置项SoftMax和紧致度量损失函数的牛脸识别方法
17
作者 杨胜楠 赵建敏 +1 位作者 杨梅 赵宇飞 《黑龙江畜牧兽医》 CAS 北大核心 2024年第4期36-42,共7页
为了实现精准畜牧业生产及畜牧业保险理赔中牛只身份的准确识别,试验提出了基于去偏置项SoftMax和紧致度量损失函数的牛脸识别方法,即采用深度卷积神经网络(deep convolutional neural networks,DCNNs)模型提取特征,利用去偏置项SoftMa... 为了实现精准畜牧业生产及畜牧业保险理赔中牛只身份的准确识别,试验提出了基于去偏置项SoftMax和紧致度量损失函数的牛脸识别方法,即采用深度卷积神经网络(deep convolutional neural networks,DCNNs)模型提取特征,利用去偏置项SoftMax损失函数优化特征空间中的特征分布,提高特征线性可分辨性,解决特征归一化后在投影超平面上的重叠问题;采用紧致度量损失函数结合去偏置项SoftMax损失函数联合监督模型训练,使同类特征与类内特征的平均距离最小化,提高特征聚类的紧凑性和可辨识性,同时兼顾了类内样本分布的多样性;最后试验将本算法(去偏置项SoftMax和紧致度量损失函数联合监督算法)与ArcFace损失函数、标准SoftMax损失函数、去偏置项SoftMax损失函数、标准SoftMax损失函数结合紧致度量损失函数进行了性能对分分析。结果表明:本算法的识别准确率在所有模型中最高,为97.61%;且能对高相似度牛脸正确识别。说明基于去偏置项SoftMax和紧致度量损失函数的牛脸识别方法可满足牧场牛只身份识别要求。 展开更多
关键词 深度度量学习 身份识别 牛脸识别 去偏置项SoftMax损失函数 紧致度量损失函数 深度卷积神经网络
原文传递
基于小样本度量迁移学习的表面缺陷检测 被引量:6
18
作者 黄健 郑春厚 +2 位作者 章军 王兵 陈鹏 《模式识别与人工智能》 EI CSCD 北大核心 2021年第5期407-414,共8页
将小样本学习中的度量学习方法引入缺陷检测领域,提出小样本度量迁移学习方法,用于解决深度学习方法中需要大量学习样本的问题.方法主要分为两个阶段:第一阶段使用公开或便于获得的大型数据集预训练深度网络;第二阶段将网络学习到的相... 将小样本学习中的度量学习方法引入缺陷检测领域,提出小样本度量迁移学习方法,用于解决深度学习方法中需要大量学习样本的问题.方法主要分为两个阶段:第一阶段使用公开或便于获得的大型数据集预训练深度网络;第二阶段将网络学习到的相关知识通过度量学习模块迁移到表面缺陷检测领域.实验表明,小样本学习在缺陷检测领域的可行性. 展开更多
关键词 深度学习 小样本学习 度量学习 缺陷检测
下载PDF
基于复数向量余弦相似度KNN和深度度量学习的高精度无源室内定位
19
作者 何之源 张志本 +2 位作者 沈琼霞 巩江超 王德胜 《移动通信》 2024年第8期77-84,共8页
AI及深度学习的发展为未来6G实现高精度室内定位系统提供了新思路。通过分析CSI数据的物理特性,提出了一种基于复数向量余弦相似度的改进KNN算法,显著提升了无源定位的性能。进一步地,采用度量学习方法,设计了Structured Embedding Los... AI及深度学习的发展为未来6G实现高精度室内定位系统提供了新思路。通过分析CSI数据的物理特性,提出了一种基于复数向量余弦相似度的改进KNN算法,显著提升了无源定位的性能。进一步地,采用度量学习方法,设计了Structured Embedding Loss损失函数,并引入Softmax Structure Loss优化神经网络模型,实现了端到端的高效训练和推理。实验结果表明,这些创新方法显著提高了无源定位的精度和鲁棒性,定位准确率和Macro-F1评分分别达到99.15%和99.1%,为无源定位、无线信号处理等领域提供了新的研究视角和技术路径。 展开更多
关键词 深度学习 度量学习 无源定位 信道状态信息 机器学习
下载PDF
基于IDACL深度度量学习的零件表面缺陷检测
20
作者 李可 储世伟 +2 位作者 顾杰斐 宿磊 薛志钢 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第6期32-38,共7页
针对深度度量学习模型应用于机械零件表面缺陷检测存在易受噪声标签干扰、训练时间长、分类精度不高等问题,提出了一种基于改进深度注意中心损失(IDACL)的深度度量学习方法.首先,用O2U-Net模型对样本数据进行清洗,减少噪声样本对模型训... 针对深度度量学习模型应用于机械零件表面缺陷检测存在易受噪声标签干扰、训练时间长、分类精度不高等问题,提出了一种基于改进深度注意中心损失(IDACL)的深度度量学习方法.首先,用O2U-Net模型对样本数据进行清洗,减少噪声样本对模型训练的影响;然后,将O2U-Net模型参数迁移至深度度量学习模型,并提取各类样本中心作为深度注意中心损失的初始类中心;最后,根据样本点与类中心的距离设置权重以优化损失函数,提高模型的分类精度.中间壳体零件表面缺陷的实验结果表明,提出的方法相较其他方法具有更快的训练速度和更高的检测精度. 展开更多
关键词 表面缺陷检测 深度度量学习 深度注意中心损失 O2U-Net模型 机械零件
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部