期刊文献+
共找到373篇文章
< 1 2 19 >
每页显示 20 50 100
深度学习的昨天、今天和明天 被引量:604
1
作者 余凯 贾磊 +1 位作者 陈雨强 徐伟 《计算机研究与发展》 EI CSCD 北大核心 2013年第9期1799-1804,共6页
机器学习是人工智能领域的一个重要学科.自从20世纪80年代以来,机器学习在算法、理论和应用等方面都获得巨大成功.2006年以来,机器学习领域中一个叫"深度学习"的课题开始受到学术界广泛关注,到今天已经成为互联网大数据和人... 机器学习是人工智能领域的一个重要学科.自从20世纪80年代以来,机器学习在算法、理论和应用等方面都获得巨大成功.2006年以来,机器学习领域中一个叫"深度学习"的课题开始受到学术界广泛关注,到今天已经成为互联网大数据和人工智能的一个热潮.深度学习通过建立类似于人脑的分层模型结构,对输入数据逐级提取从底层到高层的特征,从而能很好地建立从底层信号到高层语义的映射关系.近年来,谷歌、微软、IBM、百度等拥有大数据的高科技公司相继投入大量资源进行深度学习技术研发,在语音、图像、自然语言、在线广告等领域取得显著进展.从对实际应用的贡献来说,深度学习可能是机器学习领域最近这十年来最成功的研究方向.将对深度学习发展的过去和现在做一个全景式的介绍,并讨论深度学习所面临的挑战,以及将来的可能方向. 展开更多
关键词 机器学习 深度学习 语音识别 图像识别 自然语言处理 在线广告
下载PDF
深度卷积神经网络在计算机视觉中的应用研究综述 被引量:537
2
作者 卢宏涛 张秦川 《数据采集与处理》 CSCD 北大核心 2016年第1期1-17,共17页
随着大数据时代的到来,含更多隐含层的深度卷积神经网络(Convolutional neural networks,CNNs)具有更复杂的网络结构,与传统机器学习方法相比具有更强大的特征学习和特征表达能力。使用深度学习算法训练的卷积神经网络模型自提出以来在... 随着大数据时代的到来,含更多隐含层的深度卷积神经网络(Convolutional neural networks,CNNs)具有更复杂的网络结构,与传统机器学习方法相比具有更强大的特征学习和特征表达能力。使用深度学习算法训练的卷积神经网络模型自提出以来在计算机视觉领域的多个大规模识别任务上取得了令人瞩目的成绩。本文首先简要介绍深度学习和卷积神经网络的兴起与发展,概述卷积神经网络的基本模型结构、卷积特征提取和池化操作。然后综述了基于深度学习的卷积神经网络模型在图像分类、物体检测、姿态估计、图像分割和人脸识别等多个计算机视觉应用领域中的研究现状和发展趋势,主要从典型的网络结构的构建、训练方法和性能表现3个方面进行介绍。最后对目前研究中存在的一些问题进行简要的总结和讨论,并展望未来发展的新方向。 展开更多
关键词 深度学习 卷积神经网络 图像识别 目标检测 计算机视觉
下载PDF
深度学习在图像识别中的应用研究综述 被引量:375
3
作者 郑远攀 李广阳 李晔 《计算机工程与应用》 CSCD 北大核心 2019年第12期20-36,共17页
深度学习作为图像识别领域重要的技术手段,有着广阔的应用前景,开展图像识别技术研究对推动计算机视觉及人工智能的发展具有重要的理论价值和现实意义,文中对深度学习在图像识别中的应用给予综述。介绍了深度学习的由来,具体分析了深度... 深度学习作为图像识别领域重要的技术手段,有着广阔的应用前景,开展图像识别技术研究对推动计算机视觉及人工智能的发展具有重要的理论价值和现实意义,文中对深度学习在图像识别中的应用给予综述。介绍了深度学习的由来,具体分析了深度信念网络、卷积神经网络、循环神经网络、生成式对抗网络以及胶囊网络等深度学习模型,对各个深度学习模型的改进型模型逐一对比分析。总结近年来深度学习在人脸识别、医学图像识别、遥感图像分类等图像识别应用领域取得的研究成果并探讨了已有研究值得商榷之处,对深度学习在图像识别领域中的发展趋势进行探讨,指出有效使用迁移学习技术识别小样本数据,使用非监督与半监督学习对图像进行识别,如何对视频图像进行有效识别以及强化模型的理论性等是该领域研究的进一步方向。 展开更多
关键词 深度学习 图像识别 卷积神经网络 胶囊网络 迁移学习 非监督学习
下载PDF
深度学习研究与进展 被引量:132
4
作者 孙志远 鲁成祥 +1 位作者 史忠植 马刚 《计算机科学》 CSCD 北大核心 2016年第2期1-8,共8页
深度学习是机器学习领域一个新兴的研究方向,它通过模仿人脑结构,实现对复杂输入数据的高效处理,智能地学习不同的知识,而且能够有效地解决多类复杂的智能问题。近年来,随着深度学习高效学习算法的出现,机器学习界掀起了研究深度学习理... 深度学习是机器学习领域一个新兴的研究方向,它通过模仿人脑结构,实现对复杂输入数据的高效处理,智能地学习不同的知识,而且能够有效地解决多类复杂的智能问题。近年来,随着深度学习高效学习算法的出现,机器学习界掀起了研究深度学习理论及应用的热潮。实践表明,深度学习是一种高效的特征提取方法,它能够提取数据中更加抽象的特征,实现对数据更本质的刻画,同时深层模型具有更强的建模和推广能力。鉴于深度学习的优点及其广泛应用,对深度学习进行了较为系统的介绍,详细阐述了其产生背景、理论依据、典型的深度学习模型、具有代表性的快速学习算法、最新进展及实践应用,最后探讨了深度学习未来值得研究的方向。 展开更多
关键词 深度学习 机器学习 深层神经网络 图像识别 语音识别 自然语言处理
下载PDF
基于迁移学习的卷积神经网络玉米病害图像识别 被引量:124
5
作者 许景辉 邵明烨 +1 位作者 王一琛 韩文霆 《农业机械学报》 EI CAS CSCD 北大核心 2020年第2期230-236,253,共8页
为实现小数据样本复杂田间背景下的玉米病害图像识别,提出了一种基于迁移学习的卷积神经网络玉米病害图像识别模型。在VGG-16模型的基础上,设计了全新的全连接层模块,并将VGG-16模型在ImageNet图像数据集训练好的卷积层迁移到本模型中... 为实现小数据样本复杂田间背景下的玉米病害图像识别,提出了一种基于迁移学习的卷积神经网络玉米病害图像识别模型。在VGG-16模型的基础上,设计了全新的全连接层模块,并将VGG-16模型在ImageNet图像数据集训练好的卷积层迁移到本模型中。将收集到的玉米病害图像数据集按3∶1的比例分为训练集与测试集。为扩充图像数据,对训练集原图进行了旋转、翻转等操作。基于扩充前后的训练集,对只训练模型的全连接层和训练模型的全部层(卷积层+全连接层)两种迁移学习方式进行了试验,结果表明,数据扩充和训练模型的全部层能够提高模型的识别能力。在训练模型全部层和训练集数据扩充的条件下,对玉米健康叶、大斑病叶、锈病叶图像的平均识别准确率为95.33%。与全新学习相比,迁移学习能够明显提高模型的收敛速度与识别能力。将训练好的模型用Python开发为图形用户界面,可实现田间复杂背景下玉米大斑病与锈病图像的智能识别。 展开更多
关键词 玉米病害 迁移学习 深度学习 图像识别 卷积神经网络
下载PDF
人工智能的历史回顾和发展现状 被引量:107
6
作者 顾险峰 《自然杂志》 2016年第3期157-166,共10页
简略地回顾了人工智能的历史和发展现状。分析比较了人工智能两大领域:符号主义和连接主义,同时介绍了各个领域的主要原理和方法。着重回顾了深度学习的历史、复兴的原因和主要的应用。
关键词 人工智能 连接主义 符号主义 深度学习 图像识别 语音识别 神经网络
下载PDF
不同池化模型的卷积神经网络学习性能研究 被引量:78
7
作者 刘万军 梁雪剑 曲海成 《中国图象图形学报》 CSCD 北大核心 2016年第9期1178-1190,共13页
目的基于卷积神经网络的深度学习算法在图像处理领域正引起广泛关注。为了进一步提高卷积神经网络特征提取的准确度,加快参数收敛速度,优化网络学习性能,通过对比不同的池化模型对学习性能的影响提出一种动态自适应的改进池化算法。方... 目的基于卷积神经网络的深度学习算法在图像处理领域正引起广泛关注。为了进一步提高卷积神经网络特征提取的准确度,加快参数收敛速度,优化网络学习性能,通过对比不同的池化模型对学习性能的影响提出一种动态自适应的改进池化算法。方法构建卷积神经网络模型,使用不同的池化模型对网络进行训练,并检验在不同迭代次数下的学习结果。在现有算法准确率不高和收敛速度较慢的情况下,通过使用不同的池化模型对网络进行训练,从而构建一种新的动态自适应池化模型,并研究在不同迭代次数下其对识别准确率和收敛速度的影响。结果通过对比实验发现,使用动态自适应池化算法的卷积神经网络学习性能最优,在手写数字集上的收敛速度最高可以提升18.55%,而模型对图像的误识率最多可以降低20%。结论动态自适应池化算法不但使卷积神经网络对特征的提取更加精确,而且很大程度地提高了收敛速度和模型准确率,从而达到优化网络学习性能的目的。这种模型可以进一步拓展到其他与卷积神经网络相关的深度学习算法。 展开更多
关键词 深度学习 卷积神经网络 图像识别 特征提取 算法收敛 动态自适应池化
原文传递
基于深度学习的农作物病虫害图像识别技术研究进展 被引量:74
8
作者 贾少鹏 高红菊 杭潇 《农业机械学报》 EI CAS CSCD 北大核心 2019年第B07期313-317,共5页
深度学习作为图像识别领域重要的技术手段,具有识别速度快、准确率高等优势。阐明了深度学习技术研究的意义及必要性,概述了国内外深度学习领域农作物病虫害图像识别技术的研究进展,对深度学习技术在图像识别研究中存在的问题进行归纳总... 深度学习作为图像识别领域重要的技术手段,具有识别速度快、准确率高等优势。阐明了深度学习技术研究的意义及必要性,概述了国内外深度学习领域农作物病虫害图像识别技术的研究进展,对深度学习技术在图像识别研究中存在的问题进行归纳总结,并指出深度学习领域中的图像识别方法存在训练样本大、模型结构复杂、复杂图像识别正确率低等问题。提出了一种CNN与胶囊网络的组合模型,经过初步实验,模型的图像识别正确率达93.75%,比CNN模型提高了3.55个百分点。随着深度学习技术的不断发展,胶囊网络研究将是未来的发展趋势。 展开更多
关键词 病虫害 深度学习 图像识别
下载PDF
基于深度学习的盾构隧道渗漏水病害图像识别 被引量:61
9
作者 黄宏伟 李庆桐 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2017年第12期2861-2871,共11页
随着城市地铁隧道急剧增加的养护需求,地铁盾构隧道结构病害尤其是渗漏水病害亟需快速精准的识别诊断。利用计算机视觉对盾构隧道进行健康检测是近年来国内外的一种新趋势,但目前渗漏水病害图像的识别效果尚不能满足实际工程的需要。在... 随着城市地铁隧道急剧增加的养护需求,地铁盾构隧道结构病害尤其是渗漏水病害亟需快速精准的识别诊断。利用计算机视觉对盾构隧道进行健康检测是近年来国内外的一种新趋势,但目前渗漏水病害图像的识别效果尚不能满足实际工程的需要。在分析盾构隧道衬砌表面图像特点的基础上,将渗漏水图像分为6种类别,采用深度学习的方法,提出一种新颖的基于全卷积网络的盾构隧道渗漏水病害图像识别算法,并从图像识别结果、错检率和运行时间三个方面与大律法、区域生长法、分水岭法等传统图像识别方法进行对比分析。研究表明:基于全卷积网络的盾构隧道渗漏水病害的图像识别能够有效地避免管片拼缝、螺栓孔、管线、支架等干扰物的影响,特别是在克服管线遮挡方面具有优越的鲁棒性;与传统图像识别算法相比,提出方法在错检率和运行时间上具有较大优势,能够更好地满足工程需要。 展开更多
关键词 隧道工程 盾构隧道 渗漏水病害 深度学习 图像识别
原文传递
机器学习算法在医疗领域中的应用 被引量:60
10
作者 兰欣 卫荣 +5 位作者 蔡宏伟 郭佑民 侯梦薇 邢磊 那天 陆亮 《医疗卫生装备》 CAS 2019年第3期93-97,共5页
阐述了机器学习的定义及分类,介绍了决策树、贝叶斯网络、人工神经网络、支持向量机、深度学习等经典算法,重点分析了机器学习在疾病预测、疾病辅助诊断、疾病预后评估、新药研发、健康管理、医学图像识别等医疗领域的应用情况,指出了... 阐述了机器学习的定义及分类,介绍了决策树、贝叶斯网络、人工神经网络、支持向量机、深度学习等经典算法,重点分析了机器学习在疾病预测、疾病辅助诊断、疾病预后评估、新药研发、健康管理、医学图像识别等医疗领域的应用情况,指出了机器学习在医疗领域的应用还可拓展到病案推理、药物警戒等方面,对于进一步提升整个医疗行业的发展意义重大。 展开更多
关键词 机器学习 医疗领域 人工神经网络 支持向量机 深度学习 疾病预测 图像识别
下载PDF
基于YOLOv2网络的绝缘子自动识别与缺陷诊断模型 被引量:58
11
作者 赖秋频 杨军 +3 位作者 谭本东 王亮 傅思遥 韩立伟 《中国电力》 CSCD 北大核心 2019年第7期31-39,共9页
针对无人机或机器人获取的输电线路绝缘子图像,提出了一种基于深度学习图像识别框架(YOLOv2)网络的输电线路绝缘子在线识别与缺陷诊断模型,训练YOLOv2网络学习复杂背景下各种绝缘子的特征并准确识别,结合边缘检测、直线检测、图像旋转... 针对无人机或机器人获取的输电线路绝缘子图像,提出了一种基于深度学习图像识别框架(YOLOv2)网络的输电线路绝缘子在线识别与缺陷诊断模型,训练YOLOv2网络学习复杂背景下各种绝缘子的特征并准确识别,结合边缘检测、直线检测、图像旋转和垂直投影方法,对识别出各种状态的绝缘子进行缺陷诊断。输电线路巡检图像的仿真结果表明,所提出的绝缘子自动识别与缺陷诊断方法能迅速准确地从输电线路巡检图像中识别出绝缘子,并诊断出绝缘子是否破损以及缺陷位置,有利于提升输电线路智能巡检水平。 展开更多
关键词 输电线路 智能巡检 绝缘子 YOLOv2网络 深度学习 图像识别 缺陷诊断
下载PDF
融合FPN的Faster R-CNN复杂背景下棉田杂草高效识别方法 被引量:57
12
作者 彭明霞 夏俊芳 彭辉 《农业工程学报》 EI CAS CSCD 北大核心 2019年第20期202-209,共8页
为实现田间条件下快速、准确识别棉花与杂草,该文以自然光照下田间棉花与杂草为研究对象,采用垂直向下拍摄的方式获取棉花杂草视频,按1帧/s的速率从视频中提取图像,在人工去除冗余度过多的图片后,建立1000幅图片的数据集。对比了Faster ... 为实现田间条件下快速、准确识别棉花与杂草,该文以自然光照下田间棉花与杂草为研究对象,采用垂直向下拍摄的方式获取棉花杂草视频,按1帧/s的速率从视频中提取图像,在人工去除冗余度过多的图片后,建立1000幅图片的数据集。对比了Faster R-CNN和YOLOv32种典型卷积神经网络,将Faster R-CNN卷积神经网络的深度学习模型引入到棉花杂草图像识别中,并提出一种结构优化的方法,使之适用于复杂背景下的棉田杂草识别。该文选用残差卷积网络提取图像特征,Max-pooling为下采样方法,RPN网络中引入特征金字塔网络生成目标候选框,对卷积神经网络结构进行优化。在使用700幅图片进行训练后,通过200幅田间棉花杂草图像识别测试,结果表明:该方法的平均目标识别准确率达95.5%,识别单幅图像的平均耗时为1.51 s,采用GPU硬件加速后识别单幅图像的平均耗时缩短为0.09 s。优化后的Faster R-CNN卷积神经网络相对于YOLOv3平均正确率MAP高0.3以上。特别是对于小目标对象,其平均正确率之差接近0.6。所提方法对复杂背景下棉花杂草有较好的检测效果,可为精确除草提供参考。 展开更多
关键词 棉花 卷积神经网络 机器视觉 深度学习 图像识别 杂草识别 FASTER R-CNN
下载PDF
基于深度学习技术的公路隧道围岩分级方法 被引量:49
13
作者 柳厚祥 李汪石 +2 位作者 查焕奕 蒋武军 许腾 《岩土工程学报》 EI CAS CSCD 北大核心 2018年第10期1809-1817,共9页
通过深度学习技术提取公路隧道掌子面图片中的围岩分级相关信息。训练以掌子面图片和特征标签为数据集的深度卷积神经网络模型,识别围岩的节理、裂隙、破碎程度、粗糙程度、光滑程度、泥夹石和涌水等分布式特征;结合深度学习技术和岩体... 通过深度学习技术提取公路隧道掌子面图片中的围岩分级相关信息。训练以掌子面图片和特征标签为数据集的深度卷积神经网络模型,识别围岩的节理、裂隙、破碎程度、粗糙程度、光滑程度、泥夹石和涌水等分布式特征;结合深度学习技术和岩体裂隙图像智能解译方法统计围岩节理组数和间距来描述结构面完整程度;再利用色彩模型确定岩石种类描述出岩石坚硬程度;最后将围岩分级各判别因子转换为BQ值进行分级,获得围岩分级最终结果。结果表明:深度学习模型适用于识别围岩不同形态特征,利用图像识别技术获取的围岩分级参数能够实现对公路隧道围岩等级的综合判定。该处理结果与传统BQ分级结果相吻合,验证了深度学习围岩分级的可行性和准确性。 展开更多
关键词 公路隧道 围岩分级 深度学习技术 图像识别
下载PDF
基于卷积神经网络的图像识别算法设计与实现 被引量:46
14
作者 王振 高茂庭 《现代计算机(中旬刊)》 2015年第7期61-66,共6页
卷积神经网络在图像识别领域取得很好的效果,但其网络结构对图像识别的效果和效率有较大的影响,为改善识别性能,通过重复使用较小卷积核,设计并实现一种新的卷积神经网络结构,有效地减少训练参数的数量,并能够提高识别的准确率。与图像... 卷积神经网络在图像识别领域取得很好的效果,但其网络结构对图像识别的效果和效率有较大的影响,为改善识别性能,通过重复使用较小卷积核,设计并实现一种新的卷积神经网络结构,有效地减少训练参数的数量,并能够提高识别的准确率。与图像识别领域当前具有世界先进水平的ILSVRC挑战赛中取得较好成绩的算法对比实验,验证这种结构的有效性。 展开更多
关键词 卷积神经网络 深度学习 图像识别 机器学习 神经网络
下载PDF
基于深度神经网络的弱监督信息细粒度图像识别 被引量:34
15
作者 朱阳光 刘瑞敏 黄琼桃 《电子测量与仪器学报》 CSCD 北大核心 2020年第2期115-122,共8页
强监督识别算法需要大量的人工标注信息,消耗较多的人力物力资源。为了解决上述问题,满足实际需求,提出了两种基于弱监督信息图像识别方法用于细粒度图像分类(FGVC)。一种是联合残差网络和Inception网络,通过优化卷积神经网络的网络结... 强监督识别算法需要大量的人工标注信息,消耗较多的人力物力资源。为了解决上述问题,满足实际需求,提出了两种基于弱监督信息图像识别方法用于细粒度图像分类(FGVC)。一种是联合残差网络和Inception网络,通过优化卷积神经网络的网络结构提高捕捉细粒度特征的能力。另一种是对双线性CNN模型进行改进,特征提取器选取Google提出的Inception-v3模组和Inception-v4模组,最后把不同的局部特征汇集起来进行分类。通过在CUB200-2011鸟类公开数据集和Stanford Cars汽车类型数据集上进行测试,实验结果表明,提出的方法在两种数据集上的分类精度分别到达了88.3%和94.2%的分类精度,实现了较好的分类性能。 展开更多
关键词 细粒度图像分类 深度学习 图像识别 卷积神经网络
下载PDF
卷积神经网络及其在智能交通系统中的应用综述 被引量:33
16
作者 马永杰 程时升 +1 位作者 马芸婷 马义德 《交通运输工程学报》 EI CSCD 北大核心 2021年第4期48-71,共24页
从特征传输方式、空间维度、特征维度3个角度,论述了近年来卷积神经网络结构的改进方向,介绍了卷积层、池化层、激活函数、优化算法的工作原理,从基于值、等级、概率和转换域四大类总结了近年来池化方法的发展,给出了部分具有代表性的... 从特征传输方式、空间维度、特征维度3个角度,论述了近年来卷积神经网络结构的改进方向,介绍了卷积层、池化层、激活函数、优化算法的工作原理,从基于值、等级、概率和转换域四大类总结了近年来池化方法的发展,给出了部分具有代表性的激活函数对比、梯度下降算法及其改进型和自适应优化算法的工作原理和特点;梳理了卷积神经网络在车牌识别、车型识别、交通标志识别、短时交通流预测等智能交通领域中的应用和国内外研究现状,并将卷积神经网络算法与支持向量机、差分整合移动平均回归模型、卡尔曼滤波、误差反向传播神经网络、长短时记忆网络算法从优势、劣势和在智能交通领域的主要应用场景三方面进行了对比;分析了卷积神经网络在智能交通领域面临的鲁棒性不佳和实时性较差等问题,并从算法优化、并行计算层面和有监督学习到无监督学习方向研判了卷积神经网络的发展趋势。研究结果表明:卷积神经网络在视觉领域具有较强优势,在智能交通系统中主要应用于交通标志、车牌、车型识别、交通事件检测、交通状态预测;相比其他算法,卷积神经网络所提取的特征更加全面,有效地提高了识别准确度与速度,具有较大的应用价值;卷积神经网络未来将通过网络结构的优化、算法的改进、算力的提升以及基准数据集的增强,为智能交通带来新的突破。 展开更多
关键词 交通信息 深度学习 卷积神经网络 智能交通 网络结构 图像识别 研究进展
原文传递
基于改进型YOLOv4-LITE轻量级神经网络的密集圣女果识别 被引量:30
17
作者 张伏 陈自均 +2 位作者 鲍若飞 张朝臣 王治豪 《农业工程学报》 EI CAS CSCD 北大核心 2021年第16期270-278,共9页
对密集圣女果遮挡、粘连等情况下的果实进行快速识别定位,是提高设施农业环境下圣女果采摘机器人工作效率和产量预测的关键技术之一,该研究提出了一种基于改进YOLOv4-LITE轻量级神经网络的圣女果识别定位方法。为便于迁移到移动终端,该... 对密集圣女果遮挡、粘连等情况下的果实进行快速识别定位,是提高设施农业环境下圣女果采摘机器人工作效率和产量预测的关键技术之一,该研究提出了一种基于改进YOLOv4-LITE轻量级神经网络的圣女果识别定位方法。为便于迁移到移动终端,该方法使用MobileNet-v3作为模型的特征提取网络构建YOLOv4-LITE网络,以提高圣女果果实目标检测速度;为避免替换骨干网络降低检测精度,通过修改特征金字塔网络(Feature Pyramid Networks,FPN)+路径聚合网络(Path Aggregation Network,PANet)的结构,引入有利于小目标检测的104×104尺度特征层,实现细粒度检测,在PANet结构中使用深度可分离卷积代替普通卷积降低模型运算量,使网络更加轻量化;并通过载入预训练权重和冻结部分层训练方式提高模型的泛化能力。通过与YOLOv4在相同遮挡或粘连程度的测试集上的识别效果进行对比,用调和均值、平均精度、准确率评价模型之间的差异。试验结果表明:在重叠度为0.50时所提出的密集圣女果识别模型在全部测试集上调和均值、平均精度和准确率分别为0.99、99.74%和99.15%,同比YOLOv4分别提升了0.15、8.29、6.55个百分点,权重大小为45.3 MB,约为YOLOv4的1/5,对单幅416×416(像素)图像的检测,在图形处理器(Graphics Processing Unit,GPU)上速度可达3.01 ms/张。因此,该研究提出的密集圣女果识别模型具有识别速度快、识别准确率高、轻量化等特点,可为设施农业环境下圣女果采摘机器人高效工作以及圣女果产量预测提供有力的保障。 展开更多
关键词 机器视觉 模型 YOLO 深度学习 图像识别 目标检测
下载PDF
基于深度学习的黑钨矿图像识别选矿方法 被引量:27
18
作者 王李管 陈斯佳 +1 位作者 贾明滔 涂思羽 《中国有色金属学报》 EI CAS CSCD 北大核心 2020年第5期1192-1201,共10页
黑钨矿图像识别是代替黑钨选矿手选抛废的一条高效途径,但存在无法识别黑钨矿石与围岩废石的问题。本文利用深度学习中卷积神经网络进行迁移学习来解决,该方法具有收敛快速、所需数据集小和分类准确的优点。首先,对黑钨原矿彩色图像采... 黑钨矿图像识别是代替黑钨选矿手选抛废的一条高效途径,但存在无法识别黑钨矿石与围岩废石的问题。本文利用深度学习中卷积神经网络进行迁移学习来解决,该方法具有收敛快速、所需数据集小和分类准确的优点。首先,对黑钨原矿彩色图像采用旋转、平移等方法进行数据增广降低样本不平衡性。其次,基于Keras框架使用本文优化的神经网络进行全新训练。结果表明:黑钨矿石与围岩两类识别中Wu-VGG19迁移网络矿石识别率最高,为97.51%。此外,本文加入石英脉石类别继续实验,得出修改的Wu-v3迁移网络矿石识别率最高,为99.6%。 展开更多
关键词 黑钨矿选矿 迁移学习 深度学习 图像识别 卷积神经网络
下载PDF
深度学习在农业病虫害检测识别中的应用综述 被引量:27
19
作者 边柯橙 杨海军 路永华 《软件导刊》 2021年第3期26-33,共8页
深度学习是一种新兴的图像处理和数据分析技术,其中深度卷积网络在处理图像、视频、语音和音频方面取得突破性进展,其在农业领域的应用引起广泛关注。对采用深度学习技术的39项农业病虫害检测识别研究成果进行研究,分析其数据来源、预... 深度学习是一种新兴的图像处理和数据分析技术,其中深度卷积网络在处理图像、视频、语音和音频方面取得突破性进展,其在农业领域的应用引起广泛关注。对采用深度学习技术的39项农业病虫害检测识别研究成果进行研究,分析其数据来源、预处理和增强技术、应用领域、采用的模型和框架、性能指标,并与其它研究方法作对比。研究结果表明,深度学习具有良好的自动特征提取功能,提供了更好的分类效果,优于传统的机器学习方法,且数据采集的多样性、数据规模和完整性对深度学习性能有重要影响。 展开更多
关键词 深度学习 病虫害 图像识别 特征提取 智能农业
下载PDF
探讨新时代背景下新兴技术在人工智能中的应用 被引量:25
20
作者 梁子鑫 《软件》 2018年第7期166-169,共4页
近年来随着移动互联网、云计算、物联网、大数据以及智能制造技术的不断发展和突破,人工智能技术得到了迅猛的发展,各行各业都开始逐渐出现能够替代或者辅助人类完成复杂任务的一些技术或机器,给人们带来了极大地便利。本文从人工智能... 近年来随着移动互联网、云计算、物联网、大数据以及智能制造技术的不断发展和突破,人工智能技术得到了迅猛的发展,各行各业都开始逐渐出现能够替代或者辅助人类完成复杂任务的一些技术或机器,给人们带来了极大地便利。本文从人工智能基础理念出发,对人工只能发展现状、主要应用领域以及新时代常见的人工智能基础进行了阐述,最后重点针对深度学习在人工智能中的应用进行了分析。 展开更多
关键词 人工智能 深度学习 人脸识别 图像识别
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部