随着网络上图像和视频数据的快速增长,传统图像检索方法已难以高效处理海量数据。在面向大规模图像检索时,特征哈希与深度学习结合的深度哈希技术已成为发展趋势,为全面认识和理解深度哈希图像检索方法,本文对其进行梳理和综述。根据是...随着网络上图像和视频数据的快速增长,传统图像检索方法已难以高效处理海量数据。在面向大规模图像检索时,特征哈希与深度学习结合的深度哈希技术已成为发展趋势,为全面认识和理解深度哈希图像检索方法,本文对其进行梳理和综述。根据是否使用标签信息将深度哈希方法分为无监督、半监督和监督深度哈希方法,根据无监督和半监督深度哈希方法的主要研究点进一步分为基于卷积神经网络(convolutional neural networks,CNN)和基于生成对抗网络(generative adversarial networks,GAN)的无监督/半监督深度哈希方法,根据数据标签信息差异将监督深度哈希方法进一步分为基于三元组和基于成对监督信息的深度哈希方法,根据各种方法使用损失函数的不同对每类方法中一些经典方法的原理及特性进行介绍,对各种方法的优缺点进行分析。通过分析和比较各种深度哈希方法在CIFAR-10和NUS-WIDE数据集上的检索性能,以及深度哈希算法在西安邮电大学图像与信息处理研究所(Center for Image and Information Processing,CIIP)自建的两个特色数据库上的测试结果,对基于深度哈希的检索技术进行总结,分析了深度哈希的检索技术未来的发展前景。监督深度哈希的图像检索方法虽然取得了较高的检索精度。但由于监督深度哈希方法高度依赖数据标签,无监督深度哈希技术更加受到关注。基于深度哈希技术进行图像检索是实现大规模图像数据高效检索的有效方法,但存在亟待攻克的技术难点。针对实际应用需求,关于无监督深度哈希算法的研究仍需要更多关注。展开更多
We present a new method to generate efficient multi-level hashing codes for image retrieval based on the deep siamese conv01utional neural network (DSCNN). Con- ventional deep hashing methods trade off the capabilit...We present a new method to generate efficient multi-level hashing codes for image retrieval based on the deep siamese conv01utional neural network (DSCNN). Con- ventional deep hashing methods trade off the capability of capturing highly complex and nonlinear semantic informa- tion of images against very compact hash codes, usually lead- ing to high retrieval efficiency but with deteriorated accuracy. We alleviate the restrictive compactness requirement of hash codes by extending them to a two-level hierarchical coding scheme, in which the first level aims to capture the high-level semantic information extracted by the deep network using a rich encoding strategy, while the subsequent level squeezes them to more global and compact codes. At running time, we adopt an attention-based mechanism to select some of its most essential bits specific to each query image for retrieval instead of using the full hash codes of the first level. The attention-based mechanism is based on the guides of hash codes generated by the second level, taking advantage of both local and global properties of deep features. Experimental re- suits on various popular datasets demonstrate the advantages of the proposed method compared to several state-of-the-art methods.展开更多
现有的深度哈希图像检索方法主要采用卷积神经网络,提取的深度特征的相似性表征能力不足.此外,三元组深度哈希主要从小批量数据中构建局部三元组样本,样本数量较少,数据分布缺失全局性,使网络训练不够充分且收敛困难.针对上述问题,文中...现有的深度哈希图像检索方法主要采用卷积神经网络,提取的深度特征的相似性表征能力不足.此外,三元组深度哈希主要从小批量数据中构建局部三元组样本,样本数量较少,数据分布缺失全局性,使网络训练不够充分且收敛困难.针对上述问题,文中提出基于类相似特征扩充与中心三元组损失的哈希图像检索模型(Hash Image Retrieval Based on Category Similarity Feature Expansion and Center Triplet Loss,HRFT-Net).设计基于Vision Transformer的哈希特征提取模块(Hash Feature Extraction Module Based on Vision Transformer,HViT),利用Vision Transformer提取表征能力更强的全局特征信息.为了扩充小批量训练样本的数据量,提出基于类约束的相似特征扩充模块(Similar Feature Expansion Based on Category Constraint,SFEC),利用同类样本间的相似性生成新特征,丰富三元组训练样本.为了增强三元组损失的全局性,提出基于Hadamard的中心三元组损失函数(Central Triplet Loss Function Based on Hadamard,CTLH),利用Hadamard为每个类建立全局哈希中心约束,通过增添局部约束与全局中心约束的中心三元组加速网络的学习和收敛,提高图像检索的精度.在CIFAR10、NUS-WIDE数据集上的实验表明,HRFT-Net在不同长度比特位哈希码检索上的平均精度均值较优,由此验证HRFT-Net的有效性.展开更多
文摘随着网络上图像和视频数据的快速增长,传统图像检索方法已难以高效处理海量数据。在面向大规模图像检索时,特征哈希与深度学习结合的深度哈希技术已成为发展趋势,为全面认识和理解深度哈希图像检索方法,本文对其进行梳理和综述。根据是否使用标签信息将深度哈希方法分为无监督、半监督和监督深度哈希方法,根据无监督和半监督深度哈希方法的主要研究点进一步分为基于卷积神经网络(convolutional neural networks,CNN)和基于生成对抗网络(generative adversarial networks,GAN)的无监督/半监督深度哈希方法,根据数据标签信息差异将监督深度哈希方法进一步分为基于三元组和基于成对监督信息的深度哈希方法,根据各种方法使用损失函数的不同对每类方法中一些经典方法的原理及特性进行介绍,对各种方法的优缺点进行分析。通过分析和比较各种深度哈希方法在CIFAR-10和NUS-WIDE数据集上的检索性能,以及深度哈希算法在西安邮电大学图像与信息处理研究所(Center for Image and Information Processing,CIIP)自建的两个特色数据库上的测试结果,对基于深度哈希的检索技术进行总结,分析了深度哈希的检索技术未来的发展前景。监督深度哈希的图像检索方法虽然取得了较高的检索精度。但由于监督深度哈希方法高度依赖数据标签,无监督深度哈希技术更加受到关注。基于深度哈希技术进行图像检索是实现大规模图像数据高效检索的有效方法,但存在亟待攻克的技术难点。针对实际应用需求,关于无监督深度哈希算法的研究仍需要更多关注。
基金This work was partially supported by the National Natural Science Foundation of China (Grant Nos, 61373060 and 61672280) and Qing Lan Project.
文摘We present a new method to generate efficient multi-level hashing codes for image retrieval based on the deep siamese conv01utional neural network (DSCNN). Con- ventional deep hashing methods trade off the capability of capturing highly complex and nonlinear semantic informa- tion of images against very compact hash codes, usually lead- ing to high retrieval efficiency but with deteriorated accuracy. We alleviate the restrictive compactness requirement of hash codes by extending them to a two-level hierarchical coding scheme, in which the first level aims to capture the high-level semantic information extracted by the deep network using a rich encoding strategy, while the subsequent level squeezes them to more global and compact codes. At running time, we adopt an attention-based mechanism to select some of its most essential bits specific to each query image for retrieval instead of using the full hash codes of the first level. The attention-based mechanism is based on the guides of hash codes generated by the second level, taking advantage of both local and global properties of deep features. Experimental re- suits on various popular datasets demonstrate the advantages of the proposed method compared to several state-of-the-art methods.
文摘现有的深度哈希图像检索方法主要采用卷积神经网络,提取的深度特征的相似性表征能力不足.此外,三元组深度哈希主要从小批量数据中构建局部三元组样本,样本数量较少,数据分布缺失全局性,使网络训练不够充分且收敛困难.针对上述问题,文中提出基于类相似特征扩充与中心三元组损失的哈希图像检索模型(Hash Image Retrieval Based on Category Similarity Feature Expansion and Center Triplet Loss,HRFT-Net).设计基于Vision Transformer的哈希特征提取模块(Hash Feature Extraction Module Based on Vision Transformer,HViT),利用Vision Transformer提取表征能力更强的全局特征信息.为了扩充小批量训练样本的数据量,提出基于类约束的相似特征扩充模块(Similar Feature Expansion Based on Category Constraint,SFEC),利用同类样本间的相似性生成新特征,丰富三元组训练样本.为了增强三元组损失的全局性,提出基于Hadamard的中心三元组损失函数(Central Triplet Loss Function Based on Hadamard,CTLH),利用Hadamard为每个类建立全局哈希中心约束,通过增添局部约束与全局中心约束的中心三元组加速网络的学习和收敛,提高图像检索的精度.在CIFAR10、NUS-WIDE数据集上的实验表明,HRFT-Net在不同长度比特位哈希码检索上的平均精度均值较优,由此验证HRFT-Net的有效性.