期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于优化图结构自编码器的网络表示学习
1
作者 富坤 郝玉涵 +1 位作者 孙明磊 刘赢华 《计算机应用》 CSCD 北大核心 2023年第10期3054-3061,共8页
网络表示学习(NRL)旨在学习网络顶点的潜在、低维表示,再将得到的表示用于下游的网络分析任务。针对现有采用自编码器的NRL算法不能充分提取节点属性信息,学习时容易产生信息偏差从而影响学习效果的问题,提出一种基于优化图结构自编码... 网络表示学习(NRL)旨在学习网络顶点的潜在、低维表示,再将得到的表示用于下游的网络分析任务。针对现有采用自编码器的NRL算法不能充分提取节点属性信息,学习时容易产生信息偏差从而影响学习效果的问题,提出一种基于优化图结构自编码器的网络表示学习模型(NR-AGS),通过优化图结构的方式提高准确率。首先,融合结构和属性信息来生成结构和属性联合转移矩阵,进而形成高维表示;其次,利用自编码器学习低维嵌入表示;最后,通过在学习过程中加入深度嵌入聚类算法,对自编码器的训练过程和节点的类别分布划分形成自监督机制,并且通过改进的最大均值差异(MMD)算法减小学习得到的低维嵌入潜在表示层分布和原始数据分布的差距。此外,NR-AGS使用自编码器的重构损失、深度嵌入聚类损失和改进的MMD损失共同优化网络。应用NR-AGS对3个真实数据集进行学习,再使用得到的低维表示完成下游的节点分类和节点聚类任务。实验结果表明,与深度图表示模型DNGR(Deep Neural networks for Graph Representations)相比,NR-AGS在Cora、Citeseer、Wiki数据集上的Micro-F1值分别至少提升了7.2、13.5和8.2个百分点。可见,NR-AGS可以有效提升NRL的学习效果。 展开更多
关键词 网络表示学习 属性信息 自编码器 深度嵌入聚类 最大均值差异
下载PDF
基于深度嵌入聚类的ICU患者生理数据缺失插补
2
作者 李建华 朱泽阳 +1 位作者 徐礼胜 孙国哲 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第5期639-645,共7页
电子病历数据经常存在缺失,严重影响分析结果.基于MIMIC数据库中的重症监护单元(intensive care unit,ICU)患者数据研究缺失值插补,数据集由23组临床常用生理变量以及不存在缺失的5260例样本构成.提出了一种基于深度嵌入聚类的K近邻插... 电子病历数据经常存在缺失,严重影响分析结果.基于MIMIC数据库中的重症监护单元(intensive care unit,ICU)患者数据研究缺失值插补,数据集由23组临床常用生理变量以及不存在缺失的5260例样本构成.提出了一种基于深度嵌入聚类的K近邻插值方法.该方法以深度嵌入聚类为核心,通过多次聚类构造样本邻近度矩阵,再选择缺失样本的K个近邻样本,以这些近邻样本的平均值填补缺失.与均值插补、中值插补、后验分布估算插补和条件均值插补相比,该方法插补后的结果与原数据相似度更高,且更好地保留了样本间的差异性. 展开更多
关键词 重症监护单元 电子病历 缺失值插补 深度嵌入聚类 邻近度矩阵
下载PDF
基于文本深度聚类的意见领袖识别模型研究
3
作者 王世航 汤艳君 薛秋爽 《中国人民警察大学学报》 2024年第4期31-36,78,共7页
网络舆情事件所引发的犯罪呈高发态势,而传统意见领袖识别方法通常基于用户信息、转发、评论数等元数据,忽略了网络结构和文本内容等关键信息,缺乏意见领袖观点,容易导致结果偏差。针对上述问题,提出结合语义聚类的意见领袖识别模型,通... 网络舆情事件所引发的犯罪呈高发态势,而传统意见领袖识别方法通常基于用户信息、转发、评论数等元数据,忽略了网络结构和文本内容等关键信息,缺乏意见领袖观点,容易导致结果偏差。针对上述问题,提出结合语义聚类的意见领袖识别模型,通过BERT-LDA&DEC算法对用户文本进行聚类,根据不同子话题对意见领袖进行分组,提取关键词,通过将分组后的用户从网络拓扑、个人属性、活跃度三个方面建立指标体系,使用熵权灰色关联法对用户指标进行评价,最后结合聚类关键词进行综合分析。实验证明,该方法可以有效识别微博话题中不同子话题中的意见领袖及其观点。 展开更多
关键词 DEC深度嵌入聚类 意见领袖 熵权灰色关联法 BERT-LDA
下载PDF
基于节点日负荷曲线的深度嵌入式聚类及其改进方法对比研究 被引量:1
4
作者 陈谦 陈嘉雯 +1 位作者 王苏颖 史锐 《电力科学与技术学报》 CAS CSCD 北大核心 2023年第1期130-137,共8页
基于日负荷曲线的负荷节点分类是负荷建模的重要环节,详略得当的分类结果保留了负荷节点的内在特性,可提升电力系统仿真计算的效率。当前基于人工智能的节点聚类方法进展迅速,然而总体上针对数据深层特征提取的适应性仍存在不足。采用... 基于日负荷曲线的负荷节点分类是负荷建模的重要环节,详略得当的分类结果保留了负荷节点的内在特性,可提升电力系统仿真计算的效率。当前基于人工智能的节点聚类方法进展迅速,然而总体上针对数据深层特征提取的适应性仍存在不足。采用了基于改进的深度嵌入式算法的日负荷曲线聚类方法,利用神经网络可有效提取数据的深层特征的能力。进而,提出一种先升维后聚类的改进方法,通过算例对比分析,验证了本文所提算法的可行性,以及所提升维—重构聚类方法的正确性。 展开更多
关键词 负荷建模 日负荷曲线聚类 深度嵌入式 升维-重构聚类
下载PDF
基于深度卷积嵌入式聚类(DCEC)的海洋环境特征提取对渔情预报模型的改进研究--以西南印度洋大眼金枪鱼为例 被引量:1
5
作者 张天蛟 廖章泽 +3 位作者 宋博 袁红春 宋利明 张闪闪 《海洋学报》 CAS CSCD 北大核心 2021年第8期105-117,共13页
为提高大眼金枪鱼(Thunnus obesus)延绳钓渔情预报模型的预测能力,本研究提出了一种基于深度卷积嵌入式聚类(DCEC)的海洋环境时空特征提取方法,结合广义可加模型(GAM)对西南印度洋大眼金枪鱼延绳钓渔场进行预报。采用2018年1-12月0.041 ... 为提高大眼金枪鱼(Thunnus obesus)延绳钓渔情预报模型的预测能力,本研究提出了一种基于深度卷积嵌入式聚类(DCEC)的海洋环境时空特征提取方法,结合广义可加模型(GAM)对西南印度洋大眼金枪鱼延绳钓渔场进行预报。采用2018年1-12月0.041 6°×0.041 6°的MODIS-Aqua和MODISTerra海表面温度三级反演图像数据(以日为单位)构建DCEC模型,基于Davies-Bouldi指数(DBI)确定最佳聚类数,在此基础上提取各月海表温度(SST)的类别特征值F M;采用美国国家海洋和大气管理局网站2018年1-12月1°×1°的Chl a浓度月平均值作为辅助环境特征因子;采用印度洋金枪鱼委员会2018年1-12月1°×1°的大眼金枪鱼延绳钓渔业数据(以月为单位),计算单位捕捞努力量渔获量(CPUE);将SST月类别特征值F M、Chl a浓度月平均值与CPUE数据进行时空匹配,构建改进GAM;采用SST月平均值、Chl a浓度月平均值与CPUE数据构建基础GAM;采用联合假设检验(F检验)验证模型解释变量对响应变量的影响;采用赤池信息准则(AIC)、均方误差(MSE)、绘制实测值和预测值的散点图并计算相关系数r,分析改进GAM相比于基础GAM的提升效果。实验结果表明:(1)基于DCEC模型提取的F M能够较好地反映西南印度洋海表温度的时空动态特征与规律,并与西南印度洋的气候条件、季风状况和水文特征等相互耦合;(2) F M相比SST平均值的因子解释率更高,对大眼金枪鱼CPUE影响更为显著,高渔获率集中在暖冷流交汇区域;(3)改进GAM相比基础GAM的AIC值降低了9.17%,MSE降低了26.7%,散点图显示改进GAM预测的CPUE对数值与实测CPUE对数值的相关性较显著,r为0.60。本研究证明了DCEC模型在海洋环境特征提取方面的有效性,可为后序大眼金枪鱼延绳钓渔情预报模型的改进研究提供参考。 展开更多
关键词 深度卷积嵌入式聚类 海洋环境特征 大眼金枪鱼 西南印度洋 渔情预报 广义可加模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部