The lower crust and Moho are the most active boundary layers in the process of continental evolution, in which marks left by tectonic and magmatic activities during the process are preserved. The evolutionary process ...The lower crust and Moho are the most active boundary layers in the process of continental evolution, in which marks left by tectonic and magmatic activities during the process are preserved. The evolutionary process of the continental lithosphere may be reconstructed by exploring the structures of the lower crust and Moho. According to a study of the deep seismic reflection data obtained from the middle-lower Yangtze Valley, the authors find bright layered reflections ubiquitous in the lower crust and think that the bright reflections are caused by un-derplating of basic or ultrabasic magmas, which might be related to delamination of the lithosphere. On the basis of an integrated analysis of the geophysical and geological data of the region, the authors propose a model for geodynamic evolution of the middle-lower Yangtze Valley. This model suggests that the middle-lower Yangtze Valley had undergone such geodynamic processes as collision-compression, delamination-extension and underplating-melting since the end of the Permian, finally forming the gigantic middle-lower Yangtze Valley metallogenic belt.展开更多
The deep seismic sounding profile across the Tianshan Mountains revealed a two-layer crustal structure in the Tianshan region, namely the lower and upper crusts. Lateral variations of layer velocity and thickness are ...The deep seismic sounding profile across the Tianshan Mountains revealed a two-layer crustal structure in the Tianshan region, namely the lower and upper crusts. Lateral variations of layer velocity and thickness are evidently shown. Low-velocity layers spread discontinuously at the bottom of the upper crust. The Mono depth is 47 km in the Kuytun area and 50 km in the Xayar area. In the Tianshan Mountains, the Moho becomes deeper with the maximum depth of 62 km around the boundary between the southern and northern Tianshan Mountains. The average velocity ranges from 6.1 to 6.3 km/s in the crust and 8.15 km/s at the top of the upper mantle. Two groups of reliable reflective seismic phases of the Moho (Pm1 and Pm2) are recognized on the shot record section of the Kuytun area. A staked and offset region, 20-30 km long, is displayed within a shot-geophone distance of 190-210 km in Pm1 and Pm2. Calculation shows that the Moho is offset by 10 km in the northern Tianshan region, 62 km deep in the south while展开更多
Seismic anisotropy originating within the continental crust is commonly used to determine the deformation and kinematic flow within active orogens and is attributed to regionally oriented mica or hornblende grains.How...Seismic anisotropy originating within the continental crust is commonly used to determine the deformation and kinematic flow within active orogens and is attributed to regionally oriented mica or hornblende grains.However,naturally deformed rocks usually contain compositional layers(e.g.,parallel compositional banding).It is necessary to understand how both varying mineral contents and differing intensities of compositional layering influence the seismic properties of the deep crust.In this study,we analyzed the seismic response of migmatitic amphibolite with compositional banding structures.We present the microstructures,fabrics,calculated seismic velocities,and seismic anisotropies of mylonitic amphibolite from a horizontal shear layer preserved within the Ailao Shan-Red River shear zone,southwestern Yunnan,China.The investigated sample is characterized by pronounced centimeter-scale compositional banding.The microstructures and fabrics suggest that migmatitic amphibolite rocks within deep crust may delineate regions of deformation-assisted,channelized,reactive,porous melt flow.The origin of compositional banding in the studied migmatitic amphibolite is attributed primarily to partial melting together with some horizontal shearing deformation.The microfabrics and structures investigated in this study are considered to be typical for the base of active horizontal shear layers in the deep crust of southeastern Tibet.Seismic responses are modeled by using crystal preferred orientations for minerals of the migmatitic amphibolite by applying the Voigt-Reuss-Hill homogenization method.Calculated P-wave and S-wave velocities are largely consistent in the various layers of the migmatite.However,seismic anisotropies of P-wave(AV_(p))and S-wave(AVs)are higher in the melanosomes(AV_(p)=5.6%,AV_(s)=6.83%)than those in the leucosomes and the whole rock(AV_(p)=4.2%–4.6%,AV_(s)=3.1%–3.2%).In addition,there is pronounced,S-wave splitting oblique to the foliation plane in the migmatitic amphibolite.The multiple parallel com展开更多
Background The deep-sea ferromanganese crust(DSFC)is a natural archive for recording the history of the Earth’s evolution,as one of the most common authigenic assemblages in marine sediments.Although the depositional...Background The deep-sea ferromanganese crust(DSFC)is a natural archive for recording the history of the Earth’s evolution,as one of the most common authigenic assemblages in marine sediments.Although the depositional age dating using meteoric ^(10)Be has been successfully used in the study on the chronology of DSFC,the research on ^(26)Al has not seen relevant reports in this aspect due to the influence of factors such as measurement sensitivity and ^(26)Al in situ production.Method The first exploration for ^(26)Al chronology in DSFC was carried out by using accelerator mass spectrometry(AMS)measurements of ^(10)Be and ^(26)Al,and the comparison of relationship between isotopic ratios and concentrations of Al and Be.Results The growth rates of G.R=(1.44±0.09)mm/Ma,(3.58±0.29)mm/Ma,(1.52±0.10)mm/Ma and(2.93±0.14)mm/Ma are derived using ^(10)Be/^(9)Be,^(26)Al/^(27)Al ratios,^(10)Be and ^(26)Al concentrations,respectively.Conclusion The ^(26)Al chronological methods have been explored based on a DSFC sample and encouraging results were obtained.The results are preliminary and insufficient;some information is still needed to explain the difference between ^(26)Al and ^(10)Be chronology.展开更多
Many seamounts are covered with cobalt-rich ferromanganese crusts,and are increasingly attracting interest for the potential extraction of valuable mineral resources from deep seabed environments.However,the impacts o...Many seamounts are covered with cobalt-rich ferromanganese crusts,and are increasingly attracting interest for the potential extraction of valuable mineral resources from deep seabed environments.However,the impacts of potential mining activities on the vulnerable seamount ecosystem remain unclear.To enhance the understanding of connectivity in benthic invertebrate populations in the Northwest Pacific,several seamounts were surveyed and biological samples collected.In the present study,the ophiuroid species Ophioplinthaca defensor is reported for the first time from four deep seamounts in the Northwest Pacific,and described,providing more detailed morphological diagnosis characters.To assess the population structure of the species between and within seamounts,two mitochondrial markers(COI and 16 S)were sequenced.In total,20 haplotypes from 32 COI sequences and 8 haplotypes from 3716 S sequences were recovered.The star-shaped TCS networks and nonsignificant pairwise population differences reveal the absence of distinct population structures between and within seamounts.In addition,the O.defensor population seemed to have undergone a demographic expansion in history.This is the first study on the genetic population structure of a benthic invertebrate from seamounts in the Northwest Pacific,and this results suggest a potentially high,long distance dispersal capacity in O.defensor between seamounts,which could inform the development of the Regional Environmental Management Plans for the cobalt-rich crust seamounts in the area.展开更多
The Zhangzhou basin is located at the middle section of the southeast coast seismic zone of the mainland of China. Using high-resolution refraction and wide-angle reflection/refraction seismic profiling of Zhangzhou b...The Zhangzhou basin is located at the middle section of the southeast coast seismic zone of the mainland of China. Using high-resolution refraction and wide-angle reflection/refraction seismic profiling of Zhangzhou basin and its vicinity, we have obtained the crustal geometric structure and velocity structure as well as the geometric configuration and structural relationship between the deep and shallow fractures. The results show that the crust in the region is divided into the upper crust and lower crust. The thickness of the upper crust is 16.5km- 18.8km, and that of the lower crust is 12.0km- 13.0km. The upper crust is further divided into an upper and lower section. In the lower section of the upper crust, there is a low-velocity layer with a velocity of about 6.00km/s; the depth of the top surface of the low-velocity layer is about 12.0km, and the thickness is about 5.0km. The lower crust is also divided into an upper and lower section. The depth of Moho is 29.0km- 31 .8km There are 6 normal faults in the shallow crust in this region, and most of them extend downwards to a depth of less than 4kin, the maximum depth is about 5km. Below the shallow normal faults, there is a conjectural high-dip angle deep fault zone. The fault zone extends downwards till the Moho and upwards into the low-velocity layer in lower section of the upper crust. The deep and shallow faults are not tectonically connected. The combination character of deep and shallow structures in the Zhangzhou basin indicates that the Jiulongjiang fault zone is a deep fault zone with distinct characteristics and a complex deep and shallow structure background. The acquisition of deep seismic exploration results obviously enhanced the reliability of explanation of deep-structural data and the exploration precision of the region. The combination of deep and shallow structures resulted in uniform explanation results. The delamination of the crust and the characteristic of the structures are more precise and explicit. We discovered for the first time展开更多
Since the Xingtai (邢台) earthquake in 1966, China Earthquake Administration has carried out a survey campaign along more than thirty deep seismic sounding (DSS) profiles altogether about twenty thousand kilometer...Since the Xingtai (邢台) earthquake in 1966, China Earthquake Administration has carried out a survey campaign along more than thirty deep seismic sounding (DSS) profiles altogether about twenty thousand kilometers long in North China to study the velocity structure of the crust and the upper mantle in this region, and has obtained a great number of research findings. However, these researches have not provided a 3D velocity structure model of the crust of North China and cannot provide seismic evidence for the study of the deep tectonic characteristics of the crust of the whole region. Hence, based on the information from the published data of the DSS profiles, we have chosen 14 profiles to obtain a 3D velocity structure model of North China using the vectorization function of the GIS software (Arc/Info) and the Kriging data gridding method. With this velocity structure model, we have drawn the following conclusions: (1) The P-wave velocity of the uppermost crust of North China changes dramatically, exhibiting a complicated velocity structure in plane view. It can be divided into three velocity zones mainly trending towards north-west. In the research area, the lowest-velocity zones lie in the Haihe (海河) plain and Bohai (渤海) Bay. Although the geological structure of the sedimentary overburden in the study area is somewhat inherited by the upper crust, there are still several differences between them. (2) Generally, the P-wave velocity of the crust increases with depth in the study area, but there still exists local velocity reversion. In the east, low-velocity anomalies of the Haihe plain gradually disappear with increasing depth, and the Shanxi (山西) graben in the west is mainly characterized by relatively low velocity anomalies. Bounded by the Taihang (太行) Mountains, the eastern and western parts differ in structural trend of stratum above the crystalline basement. The structural trend of the Huanghuaihai (黄淮海) block in the east is mainly north-e展开更多
THE RELATIONS BETWEEN DEEPDYNAMIC PROCESS AND THEFORMATION OF OIL-GAS POOLS INTHE SONGLIAO BASIN, CHINALi Zhi’an(Changsha Institute of Geotectonics, Academia Sinica, Changsha, 410013, Hunan, China)Songliao basin, cru...THE RELATIONS BETWEEN DEEPDYNAMIC PROCESS AND THEFORMATION OF OIL-GAS POOLS INTHE SONGLIAO BASIN, CHINALi Zhi’an(Changsha Institute of Geotectonics, Academia Sinica, Changsha, 410013, Hunan, China)Songliao basin, crust structure, deep dynamics, the formation of oil-gas poolsThis essay deals in detail with the inhomogeneity of the crust structure and the variation of the Moho, the process of deep dynamics and also relations of deep dynamic process to the formation of oil-gas pools in Songliao Basin.展开更多
Geo-electric anomalies are generated during the process of stress accumulation and release associated with earthquakes.However,the mechanism of these anomalies remains equivocal.Based on the analysis of thermoelectric...Geo-electric anomalies are generated during the process of stress accumulation and release associated with earthquakes.However,the mechanism of these anomalies remains equivocal.Based on the analysis of thermoelectric characteristics of semiconductor minerals of the earth’s deep crust such as graphite,ferrosilicon alloy,magnetite etc.,we perform finite element analysis to evaluate the principles governing the thermoelectric power generated by minerals and rocks.The results show that graphite,ferrosilicon alloy and magnetite all exhibit Seebeck effect and can be superimposed.And the thermo-electric field can be enhanced with the activation temperature increases,the content of thermoelectric minerals increases,the size of aggregates increases,and the spacing of thermoelectric minerals grains decreases.Seismogenic processes would generate a similar thermal gradient.The natural semiconductor minerals in this thermal field show a thermoelectric effect,forming a thermoelectric field that interferes with the background electric field.This study indicates that thermoelectric effect may have an important influence on the formation of geoelectric field.展开更多
基金the National Natural Science Foundation of China(Grant No.40234051) the Ministry of Land and Resources of China(Grant No.20010103).
文摘The lower crust and Moho are the most active boundary layers in the process of continental evolution, in which marks left by tectonic and magmatic activities during the process are preserved. The evolutionary process of the continental lithosphere may be reconstructed by exploring the structures of the lower crust and Moho. According to a study of the deep seismic reflection data obtained from the middle-lower Yangtze Valley, the authors find bright layered reflections ubiquitous in the lower crust and think that the bright reflections are caused by un-derplating of basic or ultrabasic magmas, which might be related to delamination of the lithosphere. On the basis of an integrated analysis of the geophysical and geological data of the region, the authors propose a model for geodynamic evolution of the middle-lower Yangtze Valley. This model suggests that the middle-lower Yangtze Valley had undergone such geodynamic processes as collision-compression, delamination-extension and underplating-melting since the end of the Permian, finally forming the gigantic middle-lower Yangtze Valley metallogenic belt.
文摘The deep seismic sounding profile across the Tianshan Mountains revealed a two-layer crustal structure in the Tianshan region, namely the lower and upper crusts. Lateral variations of layer velocity and thickness are evidently shown. Low-velocity layers spread discontinuously at the bottom of the upper crust. The Mono depth is 47 km in the Kuytun area and 50 km in the Xayar area. In the Tianshan Mountains, the Moho becomes deeper with the maximum depth of 62 km around the boundary between the southern and northern Tianshan Mountains. The average velocity ranges from 6.1 to 6.3 km/s in the crust and 8.15 km/s at the top of the upper mantle. Two groups of reliable reflective seismic phases of the Moho (Pm1 and Pm2) are recognized on the shot record section of the Kuytun area. A staked and offset region, 20-30 km long, is displayed within a shot-geophone distance of 190-210 km in Pm1 and Pm2. Calculation shows that the Moho is offset by 10 km in the northern Tianshan region, 62 km deep in the south while
基金supported by the National Natural Science Foundation of China(No.41772207)the Second Tibetan Plateau Scientific Expedition and Research Program(No.2019QZKK0703).
文摘Seismic anisotropy originating within the continental crust is commonly used to determine the deformation and kinematic flow within active orogens and is attributed to regionally oriented mica or hornblende grains.However,naturally deformed rocks usually contain compositional layers(e.g.,parallel compositional banding).It is necessary to understand how both varying mineral contents and differing intensities of compositional layering influence the seismic properties of the deep crust.In this study,we analyzed the seismic response of migmatitic amphibolite with compositional banding structures.We present the microstructures,fabrics,calculated seismic velocities,and seismic anisotropies of mylonitic amphibolite from a horizontal shear layer preserved within the Ailao Shan-Red River shear zone,southwestern Yunnan,China.The investigated sample is characterized by pronounced centimeter-scale compositional banding.The microstructures and fabrics suggest that migmatitic amphibolite rocks within deep crust may delineate regions of deformation-assisted,channelized,reactive,porous melt flow.The origin of compositional banding in the studied migmatitic amphibolite is attributed primarily to partial melting together with some horizontal shearing deformation.The microfabrics and structures investigated in this study are considered to be typical for the base of active horizontal shear layers in the deep crust of southeastern Tibet.Seismic responses are modeled by using crystal preferred orientations for minerals of the migmatitic amphibolite by applying the Voigt-Reuss-Hill homogenization method.Calculated P-wave and S-wave velocities are largely consistent in the various layers of the migmatite.However,seismic anisotropies of P-wave(AV_(p))and S-wave(AVs)are higher in the melanosomes(AV_(p)=5.6%,AV_(s)=6.83%)than those in the leucosomes and the whole rock(AV_(p)=4.2%–4.6%,AV_(s)=3.1%–3.2%).In addition,there is pronounced,S-wave splitting oblique to the foliation plane in the migmatitic amphibolite.The multiple parallel com
基金National Natural Science Foundation of China,11775157,Kejun Dong.
文摘Background The deep-sea ferromanganese crust(DSFC)is a natural archive for recording the history of the Earth’s evolution,as one of the most common authigenic assemblages in marine sediments.Although the depositional age dating using meteoric ^(10)Be has been successfully used in the study on the chronology of DSFC,the research on ^(26)Al has not seen relevant reports in this aspect due to the influence of factors such as measurement sensitivity and ^(26)Al in situ production.Method The first exploration for ^(26)Al chronology in DSFC was carried out by using accelerator mass spectrometry(AMS)measurements of ^(10)Be and ^(26)Al,and the comparison of relationship between isotopic ratios and concentrations of Al and Be.Results The growth rates of G.R=(1.44±0.09)mm/Ma,(3.58±0.29)mm/Ma,(1.52±0.10)mm/Ma and(2.93±0.14)mm/Ma are derived using ^(10)Be/^(9)Be,^(26)Al/^(27)Al ratios,^(10)Be and ^(26)Al concentrations,respectively.Conclusion The ^(26)Al chronological methods have been explored based on a DSFC sample and encouraging results were obtained.The results are preliminary and insufficient;some information is still needed to explain the difference between ^(26)Al and ^(10)Be chronology.
基金The National Natural Science Foundation of China under contract No.42076135the Foundation of China Ocean Mineral Resources R&D Association under contract Nos DY135-E2-2-06 and DY135-E2-2-03+1 种基金the Project of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,Ministry of Natural Resources,under contract No.SOEDZZ2002the Scientific Research Fund of the Second Institute of Oceanography,Ministry of Natural Resources,under contract No.JG1528
文摘Many seamounts are covered with cobalt-rich ferromanganese crusts,and are increasingly attracting interest for the potential extraction of valuable mineral resources from deep seabed environments.However,the impacts of potential mining activities on the vulnerable seamount ecosystem remain unclear.To enhance the understanding of connectivity in benthic invertebrate populations in the Northwest Pacific,several seamounts were surveyed and biological samples collected.In the present study,the ophiuroid species Ophioplinthaca defensor is reported for the first time from four deep seamounts in the Northwest Pacific,and described,providing more detailed morphological diagnosis characters.To assess the population structure of the species between and within seamounts,two mitochondrial markers(COI and 16 S)were sequenced.In total,20 haplotypes from 32 COI sequences and 8 haplotypes from 3716 S sequences were recovered.The star-shaped TCS networks and nonsignificant pairwise population differences reveal the absence of distinct population structures between and within seamounts.In addition,the O.defensor population seemed to have undergone a demographic expansion in history.This is the first study on the genetic population structure of a benthic invertebrate from seamounts in the Northwest Pacific,and this results suggest a potentially high,long distance dispersal capacity in O.defensor between seamounts,which could inform the development of the Regional Environmental Management Plans for the cobalt-rich crust seamounts in the area.
基金This research was funded by the 10th Five-Year KeyProject of Fujian Province ,entitled"Exploration of active fault and seismic risk evaluationin cities in Fujian province"
文摘The Zhangzhou basin is located at the middle section of the southeast coast seismic zone of the mainland of China. Using high-resolution refraction and wide-angle reflection/refraction seismic profiling of Zhangzhou basin and its vicinity, we have obtained the crustal geometric structure and velocity structure as well as the geometric configuration and structural relationship between the deep and shallow fractures. The results show that the crust in the region is divided into the upper crust and lower crust. The thickness of the upper crust is 16.5km- 18.8km, and that of the lower crust is 12.0km- 13.0km. The upper crust is further divided into an upper and lower section. In the lower section of the upper crust, there is a low-velocity layer with a velocity of about 6.00km/s; the depth of the top surface of the low-velocity layer is about 12.0km, and the thickness is about 5.0km. The lower crust is also divided into an upper and lower section. The depth of Moho is 29.0km- 31 .8km There are 6 normal faults in the shallow crust in this region, and most of them extend downwards to a depth of less than 4kin, the maximum depth is about 5km. Below the shallow normal faults, there is a conjectural high-dip angle deep fault zone. The fault zone extends downwards till the Moho and upwards into the low-velocity layer in lower section of the upper crust. The deep and shallow faults are not tectonically connected. The combination character of deep and shallow structures in the Zhangzhou basin indicates that the Jiulongjiang fault zone is a deep fault zone with distinct characteristics and a complex deep and shallow structure background. The acquisition of deep seismic exploration results obviously enhanced the reliability of explanation of deep-structural data and the exploration precision of the region. The combination of deep and shallow structures resulted in uniform explanation results. The delamination of the crust and the characteristic of the structures are more precise and explicit. We discovered for the first time
基金This paper is supported by the National Natural Science Foundation of China (No.40434010)the Focused Subject Program of Beijing (No. XK104910589).
文摘Since the Xingtai (邢台) earthquake in 1966, China Earthquake Administration has carried out a survey campaign along more than thirty deep seismic sounding (DSS) profiles altogether about twenty thousand kilometers long in North China to study the velocity structure of the crust and the upper mantle in this region, and has obtained a great number of research findings. However, these researches have not provided a 3D velocity structure model of the crust of North China and cannot provide seismic evidence for the study of the deep tectonic characteristics of the crust of the whole region. Hence, based on the information from the published data of the DSS profiles, we have chosen 14 profiles to obtain a 3D velocity structure model of North China using the vectorization function of the GIS software (Arc/Info) and the Kriging data gridding method. With this velocity structure model, we have drawn the following conclusions: (1) The P-wave velocity of the uppermost crust of North China changes dramatically, exhibiting a complicated velocity structure in plane view. It can be divided into three velocity zones mainly trending towards north-west. In the research area, the lowest-velocity zones lie in the Haihe (海河) plain and Bohai (渤海) Bay. Although the geological structure of the sedimentary overburden in the study area is somewhat inherited by the upper crust, there are still several differences between them. (2) Generally, the P-wave velocity of the crust increases with depth in the study area, but there still exists local velocity reversion. In the east, low-velocity anomalies of the Haihe plain gradually disappear with increasing depth, and the Shanxi (山西) graben in the west is mainly characterized by relatively low velocity anomalies. Bounded by the Taihang (太行) Mountains, the eastern and western parts differ in structural trend of stratum above the crystalline basement. The structural trend of the Huanghuaihai (黄淮海) block in the east is mainly north-e
文摘THE RELATIONS BETWEEN DEEPDYNAMIC PROCESS AND THEFORMATION OF OIL-GAS POOLS INTHE SONGLIAO BASIN, CHINALi Zhi’an(Changsha Institute of Geotectonics, Academia Sinica, Changsha, 410013, Hunan, China)Songliao basin, crust structure, deep dynamics, the formation of oil-gas poolsThis essay deals in detail with the inhomogeneity of the crust structure and the variation of the Moho, the process of deep dynamics and also relations of deep dynamic process to the formation of oil-gas pools in Songliao Basin.
基金funded by the Open Foundation of the United Laboratory of High-Pressure Physics and Earthquake Science of China,grant number 2019HPPES03。
文摘Geo-electric anomalies are generated during the process of stress accumulation and release associated with earthquakes.However,the mechanism of these anomalies remains equivocal.Based on the analysis of thermoelectric characteristics of semiconductor minerals of the earth’s deep crust such as graphite,ferrosilicon alloy,magnetite etc.,we perform finite element analysis to evaluate the principles governing the thermoelectric power generated by minerals and rocks.The results show that graphite,ferrosilicon alloy and magnetite all exhibit Seebeck effect and can be superimposed.And the thermo-electric field can be enhanced with the activation temperature increases,the content of thermoelectric minerals increases,the size of aggregates increases,and the spacing of thermoelectric minerals grains decreases.Seismogenic processes would generate a similar thermal gradient.The natural semiconductor minerals in this thermal field show a thermoelectric effect,forming a thermoelectric field that interferes with the background electric field.This study indicates that thermoelectric effect may have an important influence on the formation of geoelectric field.