目前,商用的深蓝有机发光二极管(OLED)使用的三重态-三重态融合(TTF)型发光材料只能捕获50%的三重态(T_(1))激子,导致其器件效率较低.基于窄带蓝色发射体的热激活延迟荧光(TADF)和超荧光策略可以实现接近100%的激子利用率,然而,在发射层...目前,商用的深蓝有机发光二极管(OLED)使用的三重态-三重态融合(TTF)型发光材料只能捕获50%的三重态(T_(1))激子,导致其器件效率较低.基于窄带蓝色发射体的热激活延迟荧光(TADF)和超荧光策略可以实现接近100%的激子利用率,然而,在发射层(EML)中停留的高能量T_(1)激子通常会导致不可避免的分子降解,从而限制了器件的使用寿命.为了解决这一问题,本文研究了一种TTF-杂化局域-电荷转移态(HLCT)一体化分子,旨在通过多个激子回收通道降低EML内T_(1)激子的密度,从而提高高效深蓝OLED的稳定性.通过TTF过程回收T_(1)激子,通过HLCT过程利用高能三重态(Tn)激子,可以提高EML中三重态激子的利用率.此外,低浓度掺杂的TTF-HLCT分子在TADF体系中可以减轻T_(1)激子猝灭造成的效率损失.最后,实现了外量子效率(EQE)为25.9%、CIE为(0.131,0.050)、蓝光指数(CE由CIEy校准)为312 cd A^(−1) CIE_(y)^(−1)的顶发射OLED,并且其寿命T90@1000 cd m^(−2)从0.5小时延长到6.1小时.本工作揭示了低浓度TTF-HLCT分子掺杂的潜力,作为一种可行的解决方案,可以最大限度地减少效率猝灭,并解决蓝光OLED的稳定性问题.展开更多
It has been challenging to develop deep blue organic molecular fluorescent emitters with CIE y(y≤0.08)based on triplet-triplet annihilation(TTA). Here, we report facilely available dianthracenylphenylenebased emitter...It has been challenging to develop deep blue organic molecular fluorescent emitters with CIE y(y≤0.08)based on triplet-triplet annihilation(TTA). Here, we report facilely available dianthracenylphenylenebased emitters, which have a 3,5-di(4-t-butylphenyl)phenyl moiety at the one end and 4-cyanophenyl or 3-pyridyl at the other end, respectively. Both fluorophores show a high glass transition temperature of over 220℃ with a thermal decomposition temperature of over 430℃ at an initial weight loss of1%. The preliminary characterizations of the organic light-emitting diodes(OLEDs) that utilized these nondoped emitters provided high EQEs of 4.6%à5.9% with CIE coordinates(0.15, 0.07–0.08). The analysis of the EL transient decay revealed that TTA contributed to the observed performance. The results show that the new emitters are attractive as a potential TTA-based host to afford stable deep blue fluorescent OLEDs.展开更多
A new anthracene derivative 9,10-bis[3,5-di(4-tert-butylphenyl)phenyl]anthracene (BPPA) was synthesized via Suzuki coupling reaction and characterized by 1H NMR spectrum,mass spectrum,and elemental analysis.BPPA exhib...A new anthracene derivative 9,10-bis[3,5-di(4-tert-butylphenyl)phenyl]anthracene (BPPA) was synthesized via Suzuki coupling reaction and characterized by 1H NMR spectrum,mass spectrum,and elemental analysis.BPPA exhibits deep-blue emission both in solution and in solid thin film.This compound has a non-planar structure that results in high thermal stability and the phenomenon of polymorphism.The non-doped device based on this material shows stable deep-blue emission with the 1931 Commission international de I'Eclairage (CIE) coordinate of (0.15,0.05) under different applied voltages.The device exhibits the maximum external quantum efficiency of 2.2% at 14.9 mA/cm2 with luminance of 105 cd/m2.展开更多
π-Electron coupling of pendant conjugated segment inπ-stacked semiconducting polymers always causes the formation of defect trapped sites and further quenched high-band excitons,which is harmful to the performance a...π-Electron coupling of pendant conjugated segment inπ-stacked semiconducting polymers always causes the formation of defect trapped sites and further quenched high-band excitons,which is harmful to the performance and stability of deep-blue polymer light-emitting diodes(PLEDs).Herein,considerate of“defect”carbazole(Cz)electromers in poly(N-vinylcarbazole)(PVK),a series of fluorene units are introduced into pendant segments(PVCz-DMeF,PVCz-FMeNPh and PVCz-DFMeNPh)to suppress the strongπ-electron coupling of pendant Cz units and enhance radiative transition toward fabricating sable PLEDs.Compared to PVCz-FMeNPh and PVCz-DFMeNPh,PVCz-DMeF spin-coated films show a relatively efficient deep-blue emission,completely similar to its single pendant chromophore,confirmed an extremely weak charge-transfer and electron coupling between adjacent pendant segments.Therefore,PLEDs based on PVCz-DMeF present stable and deep-blue emission with a high color purity(0.17,0.08),associated with extremely weak defect emission at 600∼700nm(induced by carbazole electromers).Finally,PLEDs based on PVCz-DMeF/F8BT blended films(1:1)also present the high maximum luminance(Lmax)of 6261 cd/m2 and current efficiency(CE_(max))of 2.03 cd/A,confirmed slightly trapped sites formation.Therefore,precisely control the arrangement and packing model of pendant units inπ-stacked polymer is an essential prerequisite for building efficient and stable emitter for optoelectronic devices.展开更多
High-efficiency thermally activated delayed fluorescence(TADF) emitters and corresponding well-designed solution-processed organic light emitting diodes(OLEDs) are presently attractive due to their potential for explo...High-efficiency thermally activated delayed fluorescence(TADF) emitters and corresponding well-designed solution-processed organic light emitting diodes(OLEDs) are presently attractive due to their potential for exploiting large-area flexible displays. In this context, we innovatively integrate 2,12-di-tert-butyl-5,9-dioxa-13b-boronaphtho [3,2,1] anthracene as the acceptor with 3,6-bis(3,6-di-tert-butylcarbazol-N-yl) carbazole as the donor to construct a rigid deep-blue emitter, TB-3t BuCz, which exhibits a narrow emission with full-width-at-half-maximum(FWHM) of 46 nm. TB-3t BuCz itself dispalys no TADF characteristics both in solution or in pure film states. However, the significant TADF behavior can be observed when TB-3t BuCz is doped with 2,6-DCzPPy host due to the formation of exciplex-like species in 2,6-DCzPPy/TB-3t BuCz system. It is also found that the discernible spin-flip of triplet excitons is feasible when the S1/T1states of the formed exciplex stay slightly lower than S1 and T1states of TB-3t BuCz for the other host/TB-3t BuCz systems. Eventually, thanks to the synergetic effect of rigid structure and favorable photophysical properties of TB-3t BuCz, the solution-processed OLEDs based on 2,6-DCzPPy/TB-3t BuCz as emitting layer has achieved the significantly improved external quantum efficiency(EQE) of 14.6% with suppressed efficiency roll-off.The CIE1931 coordinate of(0.158, 0.052) is typically in deep-blue region. Note that, this EQE value is among the highest echelon of solution-processed OLEDs with deep-blue emission by utilizing boron-containing TADF emitters.展开更多
Film morphology of emissive layers is crucial to the performance and stability of solution-processable organic light-emitting diodes(OLEDs). Compared to the interpenetration of conjugated polymer chain,small molecular...Film morphology of emissive layers is crucial to the performance and stability of solution-processable organic light-emitting diodes(OLEDs). Compared to the interpenetration of conjugated polymer chain,small molecular emitter with a flexible side chain always presents easily aggregation upon external treatment, and caused π-electronic coupling, which is undesirable for the efficiency and stability of deep-blue OLEDs. Herein, we proposed a side-chain coupling strategy to enhance the film morphological an emission stability of solution-processable small molecular deep-blue emitter. In contrary to “parent” MC8 TPA,the crosslinkable styryl and vinyl units were introduced as ended unit at the side-chain of Cm TPA and OEYTPA. Interestingly, Cm TPA and OEYTPA films present a relatively stable morphology and uniform deep-blue emission after thermal annealing(160 ℃) in the atmosphere, different to the discontinuous MC8 TPA annealed film. Besides, compared to the Cm TPA and OEYTPA ones, serious polaron formation in the MC8 TPA annealed film also negative to the deep-blue emission, according to transient absorption analysis. Therefore, both Cm TPA and OEYTPA annealed film obtained at 140 ℃ present an excellent deep-blue ASE behavior with a 445 nm, but absence for MC8 TPA ones, associated with the disruption of annealed films. Finally, enhancement of device performance based on Cm TPA and OEYTPA film(~40%)after thermal annealing with a similar performance curves also confirmed the assumption above. Therefore, these results also supported the effectiveness of our side-chain coupling strategy for optoelectronic applications.展开更多
The control of the condensed superstructure of light-emitting conjugated polymers(LCPs)is a crucial factor to obtain high performance and stable organic optoelectronic devices.Side-chain engineering strategy is an eff...The control of the condensed superstructure of light-emitting conjugated polymers(LCPs)is a crucial factor to obtain high performance and stable organic optoelectronic devices.Side-chain engineering strategy is an effective platform to tune inter chain aggregation and photophysical behaviour of LCPs.Herein,we systematically investigated the alkyl-chain branched effecton the conformational transition and photophysical behaviour of polydiarylfluorenes toward efficient blue optoelectronic devices.The branched side chain will improve materials solubility to inhibit interchain aggregation in solution according to DLS and optical analysis,which is useful to obtain high quality film.Therefore,our branched PEODPF,POYDPF pristine film present high luminance efficiency of 36.1%and 39.6%,enhanced about 20%relative to that of PODPF.Compared to the liner-type sides'chain,these branched chains also suppress chain planarization and improve film morphological stability effectively.Interestingly,the branched polymer also had excellent stable amplified spontaneous emission(ASE)behaviour with low threshold(4.72μJ/cm2)and a center peak of 465 nm,even thermal annealing at 220℃in the air atmosphere.Therefore,side-chain branched strategy for LCPs is an effective means to control interchain aggregation,film morphology and photophysical property of LCPs.展开更多
In the design of conjugated molecules,modular production enables materials to easily realize structure modification and precisely tune their photoelectrical property.Construction of a novel and universal building bloc...In the design of conjugated molecules,modular production enables materials to easily realize structure modification and precisely tune their photoelectrical property.Construction of a novel and universal building block is crucial to design and manufacture high performance and stable conjugated molecules for optoelectronic application.Herein,we originally demonstrated a universal 4-qualifiable fluorene-based building block,which is a fundamental molecular segment to functionalize and obtain novel conjugated materials.Compared to the traditional modification at 9-site,additional 4-position functionalization provided an exciting blueprint to not only tune electronic structure and excited state via p-n molecular design engineering and space charge-transfer strategy,but also allow for optimizing intermolecular arrangement and obtaining solution-processing ability.The introduction of the 4-site substituent in fluorene based semiconductors may endow materials with unique properties.Finally,we successfully prepared two stable deep-blue light-emitting conjugated polymer,PODOPF and PODOF,by utilizing the 4-substituent fluorene based building block.It is believable that the performance,stability and processibility of reported outstanding fluorene-based conjugated molecules can be further optimized based on this universal building block.展开更多
基金supported by the National Key Research and Development Program of China(2022YFE0109000)the National Natural Science Foundation of China(62374112)the Natural Science Foundation of Shandong Province(ZR2002MF271).
文摘目前,商用的深蓝有机发光二极管(OLED)使用的三重态-三重态融合(TTF)型发光材料只能捕获50%的三重态(T_(1))激子,导致其器件效率较低.基于窄带蓝色发射体的热激活延迟荧光(TADF)和超荧光策略可以实现接近100%的激子利用率,然而,在发射层(EML)中停留的高能量T_(1)激子通常会导致不可避免的分子降解,从而限制了器件的使用寿命.为了解决这一问题,本文研究了一种TTF-杂化局域-电荷转移态(HLCT)一体化分子,旨在通过多个激子回收通道降低EML内T_(1)激子的密度,从而提高高效深蓝OLED的稳定性.通过TTF过程回收T_(1)激子,通过HLCT过程利用高能三重态(Tn)激子,可以提高EML中三重态激子的利用率.此外,低浓度掺杂的TTF-HLCT分子在TADF体系中可以减轻T_(1)激子猝灭造成的效率损失.最后,实现了外量子效率(EQE)为25.9%、CIE为(0.131,0.050)、蓝光指数(CE由CIEy校准)为312 cd A^(−1) CIE_(y)^(−1)的顶发射OLED,并且其寿命T90@1000 cd m^(−2)从0.5小时延长到6.1小时.本工作揭示了低浓度TTF-HLCT分子掺杂的潜力,作为一种可行的解决方案,可以最大限度地减少效率猝灭,并解决蓝光OLED的稳定性问题.
基金supported by the National Key R&D Program of China(2016YFB0400701)NSFC-Guangdong Joint Program(U1801258 and U1301243)+2 种基金Department of Science and Technology of Guangdong Province(2017A050503002)Foundation of Guangzhou Science and Technology Project(201504010012)the support of Dongguan Major Special Project(2017215117010)
文摘It has been challenging to develop deep blue organic molecular fluorescent emitters with CIE y(y≤0.08)based on triplet-triplet annihilation(TTA). Here, we report facilely available dianthracenylphenylenebased emitters, which have a 3,5-di(4-t-butylphenyl)phenyl moiety at the one end and 4-cyanophenyl or 3-pyridyl at the other end, respectively. Both fluorophores show a high glass transition temperature of over 220℃ with a thermal decomposition temperature of over 430℃ at an initial weight loss of1%. The preliminary characterizations of the organic light-emitting diodes(OLEDs) that utilized these nondoped emitters provided high EQEs of 4.6%à5.9% with CIE coordinates(0.15, 0.07–0.08). The analysis of the EL transient decay revealed that TTA contributed to the observed performance. The results show that the new emitters are attractive as a potential TTA-based host to afford stable deep blue fluorescent OLEDs.
基金supported by the National Natural Science Foundation of China (50773090,50825304,51033007)
文摘A new anthracene derivative 9,10-bis[3,5-di(4-tert-butylphenyl)phenyl]anthracene (BPPA) was synthesized via Suzuki coupling reaction and characterized by 1H NMR spectrum,mass spectrum,and elemental analysis.BPPA exhibits deep-blue emission both in solution and in solid thin film.This compound has a non-planar structure that results in high thermal stability and the phenomenon of polymorphism.The non-doped device based on this material shows stable deep-blue emission with the 1931 Commission international de I'Eclairage (CIE) coordinate of (0.15,0.05) under different applied voltages.The device exhibits the maximum external quantum efficiency of 2.2% at 14.9 mA/cm2 with luminance of 105 cd/m2.
基金supported by the National Natural Science Foundation of China(Nos.22105099 and 61874053)Natural Science Foundation of Jiangsu Province(No.BK20200700)+2 种基金the China Postdoctoral Science Foundation(No.2022M711591)the open research fund from Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology(No.OMST202101)the State Key Laboratory of Luminescent Materials and Devices(South China University of Technology).
文摘π-Electron coupling of pendant conjugated segment inπ-stacked semiconducting polymers always causes the formation of defect trapped sites and further quenched high-band excitons,which is harmful to the performance and stability of deep-blue polymer light-emitting diodes(PLEDs).Herein,considerate of“defect”carbazole(Cz)electromers in poly(N-vinylcarbazole)(PVK),a series of fluorene units are introduced into pendant segments(PVCz-DMeF,PVCz-FMeNPh and PVCz-DFMeNPh)to suppress the strongπ-electron coupling of pendant Cz units and enhance radiative transition toward fabricating sable PLEDs.Compared to PVCz-FMeNPh and PVCz-DFMeNPh,PVCz-DMeF spin-coated films show a relatively efficient deep-blue emission,completely similar to its single pendant chromophore,confirmed an extremely weak charge-transfer and electron coupling between adjacent pendant segments.Therefore,PLEDs based on PVCz-DMeF present stable and deep-blue emission with a high color purity(0.17,0.08),associated with extremely weak defect emission at 600∼700nm(induced by carbazole electromers).Finally,PLEDs based on PVCz-DMeF/F8BT blended films(1:1)also present the high maximum luminance(Lmax)of 6261 cd/m2 and current efficiency(CE_(max))of 2.03 cd/A,confirmed slightly trapped sites formation.Therefore,precisely control the arrangement and packing model of pendant units inπ-stacked polymer is an essential prerequisite for building efficient and stable emitter for optoelectronic devices.
基金supported by the National Natural Science Foundation of China(52103220,51922021,52273164)the Shandong Provincial Natural Science Foundation(ZR2022ZD37,ZR2019ZD50).
文摘High-efficiency thermally activated delayed fluorescence(TADF) emitters and corresponding well-designed solution-processed organic light emitting diodes(OLEDs) are presently attractive due to their potential for exploiting large-area flexible displays. In this context, we innovatively integrate 2,12-di-tert-butyl-5,9-dioxa-13b-boronaphtho [3,2,1] anthracene as the acceptor with 3,6-bis(3,6-di-tert-butylcarbazol-N-yl) carbazole as the donor to construct a rigid deep-blue emitter, TB-3t BuCz, which exhibits a narrow emission with full-width-at-half-maximum(FWHM) of 46 nm. TB-3t BuCz itself dispalys no TADF characteristics both in solution or in pure film states. However, the significant TADF behavior can be observed when TB-3t BuCz is doped with 2,6-DCzPPy host due to the formation of exciplex-like species in 2,6-DCzPPy/TB-3t BuCz system. It is also found that the discernible spin-flip of triplet excitons is feasible when the S1/T1states of the formed exciplex stay slightly lower than S1 and T1states of TB-3t BuCz for the other host/TB-3t BuCz systems. Eventually, thanks to the synergetic effect of rigid structure and favorable photophysical properties of TB-3t BuCz, the solution-processed OLEDs based on 2,6-DCzPPy/TB-3t BuCz as emitting layer has achieved the significantly improved external quantum efficiency(EQE) of 14.6% with suppressed efficiency roll-off.The CIE1931 coordinate of(0.158, 0.052) is typically in deep-blue region. Note that, this EQE value is among the highest echelon of solution-processed OLEDs with deep-blue emission by utilizing boron-containing TADF emitters.
基金supported by the National Natural Science Foundation of China (Nos.22075136,61874053)National Key Research and Development Program of China (No.2020YFA0709900)+5 种基金Natural Science Funds of the Education Committee of Jiangsu Province (No.18KJA430009)Natural Science Foundation of Jiangsu Province (No.BK20200700)“High-Level Talents in Six Industries” of Jiangsu Province (No.XYDXX-019)Chain Postdoctoral Science Foundation (No.2021M692623)the open research fund from State Key Laboratory of Supramolecular Structure and Materials (No.sklssm202108)Anhui Province Key Laboratory of Environmentfriendly Polymer Materials and Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology。
文摘Film morphology of emissive layers is crucial to the performance and stability of solution-processable organic light-emitting diodes(OLEDs). Compared to the interpenetration of conjugated polymer chain,small molecular emitter with a flexible side chain always presents easily aggregation upon external treatment, and caused π-electronic coupling, which is undesirable for the efficiency and stability of deep-blue OLEDs. Herein, we proposed a side-chain coupling strategy to enhance the film morphological an emission stability of solution-processable small molecular deep-blue emitter. In contrary to “parent” MC8 TPA,the crosslinkable styryl and vinyl units were introduced as ended unit at the side-chain of Cm TPA and OEYTPA. Interestingly, Cm TPA and OEYTPA films present a relatively stable morphology and uniform deep-blue emission after thermal annealing(160 ℃) in the atmosphere, different to the discontinuous MC8 TPA annealed film. Besides, compared to the Cm TPA and OEYTPA ones, serious polaron formation in the MC8 TPA annealed film also negative to the deep-blue emission, according to transient absorption analysis. Therefore, both Cm TPA and OEYTPA annealed film obtained at 140 ℃ present an excellent deep-blue ASE behavior with a 445 nm, but absence for MC8 TPA ones, associated with the disruption of annealed films. Finally, enhancement of device performance based on Cm TPA and OEYTPA film(~40%)after thermal annealing with a similar performance curves also confirmed the assumption above. Therefore, these results also supported the effectiveness of our side-chain coupling strategy for optoelectronic applications.
基金supported by the National Natural Science Foundation of China(Nos.61874053,21774061,91833306)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,PAPD(No.YX03002)+10 种基金the Six Peak Talents Foundation of Jiangsu Province(No.XCL-CXTD-009)Natural Science Funds of the Education Committee of Jiangsu Province(No.18KJA430009)"High-Level Talents in Six Industries"of Jiangsu Province(No.XYDXX-019)Program for Postgraduates Research Innovation in University of Jiangsu Province(No.KYCX17_0752)the open research fund from Key Laboratory for Organic Electronics and Information Display&and State Key Laboratory of Supramolecular Structure and Materials(No.sklssm2019017)Overseas Merit Foundation of Science and Technology of Nanjingfinancial support from the Regional Government of Madrid through NMAT2D-CM Project(No.S2018/NMT-4511)the Spanish Ministry of Economy and Competitiveness through project RTI2018-097508-B-I00through the Severo Ochoa Program for Centers of Excellence(No.SEV-2016-0686)the Campus of International Excellence(CEI)UAM+CSICthe China Scholarship Council(No.201608390023)for a PhD sponsorship
文摘The control of the condensed superstructure of light-emitting conjugated polymers(LCPs)is a crucial factor to obtain high performance and stable organic optoelectronic devices.Side-chain engineering strategy is an effective platform to tune inter chain aggregation and photophysical behaviour of LCPs.Herein,we systematically investigated the alkyl-chain branched effecton the conformational transition and photophysical behaviour of polydiarylfluorenes toward efficient blue optoelectronic devices.The branched side chain will improve materials solubility to inhibit interchain aggregation in solution according to DLS and optical analysis,which is useful to obtain high quality film.Therefore,our branched PEODPF,POYDPF pristine film present high luminance efficiency of 36.1%and 39.6%,enhanced about 20%relative to that of PODPF.Compared to the liner-type sides'chain,these branched chains also suppress chain planarization and improve film morphological stability effectively.Interestingly,the branched polymer also had excellent stable amplified spontaneous emission(ASE)behaviour with low threshold(4.72μJ/cm2)and a center peak of 465 nm,even thermal annealing at 220℃in the air atmosphere.Therefore,side-chain branched strategy for LCPs is an effective means to control interchain aggregation,film morphology and photophysical property of LCPs.
基金supported by the Natural Science Foundation of Jiangsu Province(No.BK20200700)National Natural Science Foundation of China(Nos.22075136,61874053)+4 种基金Natural Science Funds of the Education Committee of Jiangsu Province(No.18KJA430009)"High-Level Talents in Six Industries"of Jiangsu Province(No.XYDXX-019)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Nos.KYCX21_1097,KYCX21_0771)Nanjing Vocational University of Industry Technology Start-up Fund(No.YK21-02-07)the open research fund from Anhui Province Key Laboratory of Environment-friendly Polymer Materials and Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology.
文摘In the design of conjugated molecules,modular production enables materials to easily realize structure modification and precisely tune their photoelectrical property.Construction of a novel and universal building block is crucial to design and manufacture high performance and stable conjugated molecules for optoelectronic application.Herein,we originally demonstrated a universal 4-qualifiable fluorene-based building block,which is a fundamental molecular segment to functionalize and obtain novel conjugated materials.Compared to the traditional modification at 9-site,additional 4-position functionalization provided an exciting blueprint to not only tune electronic structure and excited state via p-n molecular design engineering and space charge-transfer strategy,but also allow for optimizing intermolecular arrangement and obtaining solution-processing ability.The introduction of the 4-site substituent in fluorene based semiconductors may endow materials with unique properties.Finally,we successfully prepared two stable deep-blue light-emitting conjugated polymer,PODOPF and PODOF,by utilizing the 4-substituent fluorene based building block.It is believable that the performance,stability and processibility of reported outstanding fluorene-based conjugated molecules can be further optimized based on this universal building block.