期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
贫数据中基于模型自训练的空气处理设备故障诊断
1
作者 孟华 裴迪 +3 位作者 阮应君 钱凡悦 邓永康 郑铭桦 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期454-461,共8页
针对空气处理设备(AHU)故障贫数据,基于深度置信网络(DBN)模型对4种特征选择算法进行对比研究,结果表明最大相关最小冗余算法的特征子集在诊断准确率及子集元素稳定性上表现最优。提出将DBN嵌入自训练框架的故障诊断模型,发现DBN自训练... 针对空气处理设备(AHU)故障贫数据,基于深度置信网络(DBN)模型对4种特征选择算法进行对比研究,结果表明最大相关最小冗余算法的特征子集在诊断准确率及子集元素稳定性上表现最优。提出将DBN嵌入自训练框架的故障诊断模型,发现DBN自训练的诊断准确率较单纯DBN最高可提升19.5%。提出均匀抽样及按比例抽样2种自训练伪标签抽样策略,二者的诊断准确率均随抽样数减小而增大,在不同抽样数中的最大差异为3.42%;在所有贫数据样本中,均匀抽样策略始终优于按比例抽样,诊断准确率最大相差1.39%,表明在故障标签匮乏时,采用均匀抽样策略及较小的抽样数有利于提升DBN自训练的诊断性能。 展开更多
关键词 故障检测与诊断 空气处理设备 贫数据 特征选择 深度置信网络自训练模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部