期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
考虑机场、航空公司与空管需求的机场群离场航班时刻优化
1
作者 张兆宁 刘泽铧 《科学技术与工程》 北大核心 2024年第9期3896-3903,共8页
随着中国航空流量的不断增加,机场群内航班延误时间长、延误架次多、机场时刻紧张等问题逐渐暴露,这些问题主要是航班时刻设置不合理所导致。为解决这些问题,需要对机场群内航班时刻进行优化。通过从机场、航空公司、空管3个角度综合考... 随着中国航空流量的不断增加,机场群内航班延误时间长、延误架次多、机场时刻紧张等问题逐渐暴露,这些问题主要是航班时刻设置不合理所导致。为解决这些问题,需要对机场群内航班时刻进行优化。通过从机场、航空公司、空管3个角度综合考虑,分别以延误时间、航空公司航班时刻调整总方差、管制员总调整量作为优化目标,建立了机场群航班时刻优化模型,并使用权重线性递减的粒子群优化算法实现对模型的求解。以京津冀机场群为例进行分析,使用MATLAB对模型进行寻优。结果表明优化后机场群内总延误时间由77580 min减少至46260 min,航空公司航班时刻调整总方差由447.076减少至63.141,管制员总调整量由467次减少至253次,3个目标均得到了优化。可见该模型权衡了机场、航空公司与空管之间的公平性,为机场群航班时刻的优化提供了理论参考。 展开更多
关键词 航空运输 机场群 航班时刻优化 权重线性递减 粒子群算法
下载PDF
无人机安全路径规划的混沌粒子群优化研究
2
作者 褚宏悦 易军凯 《控制工程》 CSCD 北大核心 2024年第6期1027-1034,共8页
针对无人机(unmanned aerial vehicle,UAV)在存在多种威胁的三维环境下的安全路径规划问题,提出了一种改进的混沌粒子群优化增强算法(improvedchaotic,velocityand nonlinear decreasing inertia weight particle swarm optimization,IC... 针对无人机(unmanned aerial vehicle,UAV)在存在多种威胁的三维环境下的安全路径规划问题,提出了一种改进的混沌粒子群优化增强算法(improvedchaotic,velocityand nonlinear decreasing inertia weight particle swarm optimization,IC-VANDIWPSO)。首先,建立一个具有地形约束和无人机性能约束的威胁环境模型,把路径规划问题转化为成本函数的优化问题。再利用IC-VANDIWPSO算法与约束的对应关系,高效搜索复杂的环境,找到安全性高且成本函数小的最优路径。仿真结果表明,IC-VANDIWPSO算法在收敛速度、初始化时间、路径平滑性以及稳定性等方面都具有显著的优势,获得了更优的路径。 展开更多
关键词 无人机 路径规划 粒子群优化增强 非线性递减惯性权重 混沌理论
下载PDF
采用MPSO优化SVR的短时交通流预测方法 被引量:3
3
作者 晏雨婵 武奇生 +1 位作者 白璘 席维 《计算机技术与发展》 2019年第4期133-138,共6页
为了提高高速公路交通流量预测精度以及预测方法的稳定性,降低预测用时,提出了一种后期随机惯性权重粒子群算法与支持向量回归机相结合的短时交通流预测模型(MPSO-SVR)。该预测模型用均匀分布的随机惯性权重替代标准PSO算法中不变的惯... 为了提高高速公路交通流量预测精度以及预测方法的稳定性,降低预测用时,提出了一种后期随机惯性权重粒子群算法与支持向量回归机相结合的短时交通流预测模型(MPSO-SVR)。该预测模型用均匀分布的随机惯性权重替代标准PSO算法中不变的惯性权重ω,使算法中粒子在搜索后期拥有较大的ω,从而有效地避免算法陷入局部最优解,加快了算法的寻优速度。最后,通过不断更新惯性权重来更新粒子的速度与位置。算法不仅对支持向量回归中的惩罚因子c和核函数参数g进行寻优,而且能很好地平衡算法全局搜索与局部搜索能力,提高了算法的性能。实验结果表明,MPSO-SVR方法在沪宁高速交通流数据中比PSO-SVR方法预测精度更高、稳定性更强、耗时更短,且均方误差和平均百分比误差分别降低到28.689和12.952%。 展开更多
关键词 交通流量预测 线性递减惯性权重 粒子群算法(PSO) 支持向量回归(SVR) 参数寻优
下载PDF
动态调整概率的双重布谷鸟搜索算法 被引量:11
4
作者 陈程 贺兴时 杨新社 《计算机科学与探索》 CSCD 北大核心 2021年第5期859-880,共22页
布谷鸟搜索算法是一种新兴的仿生智能算法,存在着求解精度低、易陷入局部最优及收敛速度慢等缺陷,提出了动态调整概率的双重布谷鸟搜索算法(DECS)。首先,在自适应发现概率P中引入了种群分布熵,通过算法的所处迭代阶数和种群分布情况,动... 布谷鸟搜索算法是一种新兴的仿生智能算法,存在着求解精度低、易陷入局部最优及收敛速度慢等缺陷,提出了动态调整概率的双重布谷鸟搜索算法(DECS)。首先,在自适应发现概率P中引入了种群分布熵,通过算法的所处迭代阶数和种群分布情况,动态改变发现概率P的大小,有利于平衡布谷鸟算法局部寻优和全局寻优的能力,加快收敛速度;其次,在布谷鸟寻窝的路径位置更新公式中,采用了一种新型步长因子更新寻优方式,形成Levy飞行双重搜索模式,充分搜索空间;最后,在随机偏好游走的更新公式引入非线性对数递减的惯性权重策略,使得算法有效克服易陷入局部最优的缺陷,提高寻优搜索能力。与4种算法相比和19个测试函数的仿真结果表明:改进布谷鸟算法的寻优性能明显提高,收敛速度更快,求解精度更高,具有更强的全局搜索能力和跳出局部最优能力。 展开更多
关键词 种群分布熵 双重搜索模式 非线性对数递减的惯性权重 新型步长因子
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部