期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于CA-YOLOv5的热轧带钢表面缺陷检测方法 被引量:1
1
作者 杨森泉 丁凡 +2 位作者 文昊翔 李璞 胡松喜 《光电子.激光》 CSCD 北大核心 2024年第1期21-28,共8页
针对当前热轧带钢表面缺陷检测中存在精度低及复杂背景干扰等问题,提出一种基于坐标注意力(coordinate attention,CA)的CA-YOLOv5缺陷检测方法。主要对YOLOv5的输入端、外加模块和检测端3个方面进行改进:在输入端,采用随机拼接4张或9张... 针对当前热轧带钢表面缺陷检测中存在精度低及复杂背景干扰等问题,提出一种基于坐标注意力(coordinate attention,CA)的CA-YOLOv5缺陷检测方法。主要对YOLOv5的输入端、外加模块和检测端3个方面进行改进:在输入端,采用随机拼接4张或9张图片的方法对训练数据进行增广,并利用遗传算法(genertic algorithm,GA)对网络超参数进行寻优,使得YOLOv5更适用于带钢缺陷检测;在主干网络和外加模块之间引入CA机制,加强网络对缺陷深层特征的提取能力;最后,在检测端,对每一检测分支进行解耦,将检测的分类和位置回归两类任务分开,提升网络对缺陷的检测能力。在NEU-DET热轧带钢表面缺陷数据集上进行了验证实验,实验结果证明,CA-YOLOv5的均值平均精度(mean average precision,mAP)达到84.36%,不仅较原YOLOv5算法提升6.68%,而且优于其他先进的检测算法。 展开更多
关键词 缺陷检测 YOLOv5 坐标注意力(CA) 解耦检测头
原文传递
基于改进YOLOv5网络模型的无人机影像道路目标检测
2
作者 曹佃龙 《北京测绘》 2024年第6期936-941,共6页
针对无人机遥感道路影像内目标分布混乱且尺寸差异大、负样本所占比例较高等问题,提出了基于YOLOv5X的无人机遥感影像道路目标检测模型RA_YOLOv5。采用感受野-坐标注意力卷积替换骨干网络内的常规卷积核,然后以空洞-空间金字塔池化-通... 针对无人机遥感道路影像内目标分布混乱且尺寸差异大、负样本所占比例较高等问题,提出了基于YOLOv5X的无人机遥感影像道路目标检测模型RA_YOLOv5。采用感受野-坐标注意力卷积替换骨干网络内的常规卷积核,然后以空洞-空间金字塔池化-通道注意力层替换原始特征金字塔池化层;在特征融合网络中引入自适应特征融合层,通过特征图加权融合解决不同尺寸检测图之间样本、背景矛盾的问题;使用解耦检测头分别计算回归、分类任务,并替换损失函数以缓解正负样本不均衡问题。实验结果表明,RA_YOLOv5在VisDrone数据集上平均精度均值达到90.42%,较YOLOv5X提高了7.85%,在测试环境下,检测帧数达到35.46帧每秒,能够实际输出检测结果,同时具有良好的稳定性,能够在道路巡检、交通流量监控、应急事故处理等多种场景下发挥重要作用。 展开更多
关键词 无人机遥感 道路目标检测 感受野-坐标注意力 自适应特征融合 解耦检测头
下载PDF
基于改进YOLOv5s的无人机航拍小目标检测算法研究
3
作者 尹泉贺 原素慧 +1 位作者 朱梦琳 兰洁 《现代信息科技》 2024年第14期37-42,48,共7页
目前,无人机航拍目标检测技术在军事和民用领域得到广泛的应用,但复杂场景中小目标密集,易出现误检和漏检的情况。为此,文章提出一种基于改进YOLOv5s的无人机航拍小目标检测算法,用分组卷积取代两个普通卷积,用解耦检测头取代耦合检测头... 目前,无人机航拍目标检测技术在军事和民用领域得到广泛的应用,但复杂场景中小目标密集,易出现误检和漏检的情况。为此,文章提出一种基于改进YOLOv5s的无人机航拍小目标检测算法,用分组卷积取代两个普通卷积,用解耦检测头取代耦合检测头,去除了原始算法中的P5检测头,在PANet结构中增加一层新的P2检测头。仿真结果表明,改进算法具有较好的检测效果,mAP50较原始算法提高了9.3%,同时能够满足无人机实时性检测需求。 展开更多
关键词 无人机航拍 小目标检测 空间池化金字塔 解耦检测头
下载PDF
深度学习支持下的城市破损路沿石检测方法
4
作者 戴激光 李岩 《遥感信息》 CSCD 北大核心 2024年第3期15-21,共7页
针对破损路沿石在街景影像中受到目标多尺度、相似地物干扰以及遮挡等问题,提出了一种面向城市街道两侧破损路沿石检测的CDD-YOLO(convolutional swin transformer deformable decouple-YOLO,CDD-YOLO)模型。依据破损路沿石呈现形状尺... 针对破损路沿石在街景影像中受到目标多尺度、相似地物干扰以及遮挡等问题,提出了一种面向城市街道两侧破损路沿石检测的CDD-YOLO(convolutional swin transformer deformable decouple-YOLO,CDD-YOLO)模型。依据破损路沿石呈现形状尺度多样性特点,嵌入C3_STR(convolutional swin transformer,C3_STR)模块进行特征融合,增强模型对多尺度特征的感知性能;对于相似地物干扰导致的误检现象,加入可变形卷积模块,利用目标区域自适应特性,提升模型对相似地物的判别能力;为避免因遮挡引起的定位不准确问题,引入解耦检测头结构,增强模型对模糊边界特征的提取能力。在自制的街景破损路沿石数据集上进行验证,分析表明,该方法的precision、recall、F1、IoU 4项评价指标分别达到了82.45%、81.22%、81.01%和80.23%,显著优于其他主流目标检测方法,验证了该方法的有效性和可行性。 展开更多
关键词 破损路沿石检测 街景影像 目标多尺度 特征融合 解耦检测头
下载PDF
基于可变空间感知的目标检测算法
5
作者 高扬 安雯 《现代电子技术》 2023年第12期91-95,共5页
检测场景中目标数量不定且随机分布,目标之间尺寸差异大,使得检测难度增加。为此,文中利用可变形卷积对位置偏差的学习能力,构建两个能够建模局部几何特征的可变空间感知模块(Variable Spatial Perception Module, VSPM)。VSPM1用于特... 检测场景中目标数量不定且随机分布,目标之间尺寸差异大,使得检测难度增加。为此,文中利用可变形卷积对位置偏差的学习能力,构建两个能够建模局部几何特征的可变空间感知模块(Variable Spatial Perception Module, VSPM)。VSPM1用于特征下采样阶段,减少分辨率降低引起的信息损失,从而有效提升检测器的颈部特征融合能力,使输入检测头的特征包含更多有益预测的信息。VSPM2用于检测头部分,通过大核卷积获取全局信息,另外,通过解耦的检测头解决分类和回归任务之间的冲突。所提算法在PASCAL VOC数据集上检测精度达到84%,相比基准算法YOLOv4提高2%,能够有效提高检测性能。 展开更多
关键词 目标检测算法 可变空间感知模块 解耦检测头 特征融合 网络构架 消融实验 定性分析
下载PDF
RepViTS-YOLOX:水下模糊及遮挡目标检测方法
6
作者 陶洋 朱腾 +2 位作者 钟邦乾 周昆 周立群 《计算机工程与应用》 CSCD 北大核心 2024年第13期200-208,共9页
针对水下目标检测中的目标模糊和遮挡问题,提出基于YOLOX改进的RepViTS-YOLOX水下目标检测方法。该方法采用RepViTS作为特征提取网络并通过结构重参数化,有效提升了对水下目标的特征提取能力和模型推理速度。引入空间和通道重构(spatial... 针对水下目标检测中的目标模糊和遮挡问题,提出基于YOLOX改进的RepViTS-YOLOX水下目标检测方法。该方法采用RepViTS作为特征提取网络并通过结构重参数化,有效提升了对水下目标的特征提取能力和模型推理速度。引入空间和通道重构(spatial and channel reconstruction convolution,SCConv)模块,增强网络对模糊目标的关注。改进特征融合网络,通过跨尺度连接和多尺度融合,加强不同层次特征间的信息交流,使模型更好理解遮挡目标特征。针对定位和分类任务对特征的不同需求,引入上下文解耦头(task-specific context decoupling head,TSCODE),对遮挡目标更精准地定位和分类。实验结果证明,RepViTS-YOLOX方法在RUOD数据集上取得了85.7%的检测效果,较YOLOX提高了3.8个百分点。检测结果显示,该方法可以有效改善水下模糊和遮挡目标的检测情况,提高水下目标检测精度。 展开更多
关键词 YOLOX 目标检测 结构重参数化 解耦检测头 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部