In this paper,two fault tolerant channel-encrypting quantum dialogue(QD)protocols against collective noise are presented.One is against collective-dephasing noise,while the other is against collective-rotation noise.T...In this paper,two fault tolerant channel-encrypting quantum dialogue(QD)protocols against collective noise are presented.One is against collective-dephasing noise,while the other is against collective-rotation noise.The decoherent-free states,each of which is composed of two physical qubits,act as traveling states combating collective noise.Einstein-Podolsky-Rosen pairs,which play the role of private quantum key,are securely shared between two participants over a collective-noise channel in advance.Through encryption and decryption with private quantum key,the initial state of each traveling two-photon logical qubit is privately shared between two participants.Due to quantum encryption sharing of the initial state of each traveling logical qubit,the issue of information leakage is overcome.The private quantum key can be repeatedly used after rotation as long as the rotation angle is properly chosen,making quantum resource economized.As a result,their information-theoretical efficiency is nearly up to 66.7%.The proposed QD protocols only need single-photon measurements rather than two-photon joint measurements for quantum measurements.Security analysis shows that an eavesdropper cannot obtain anything useful about secret messages during the dialogue process without being discovered.Furthermore,the proposed QD protocols can be implemented with current techniques in experiment.展开更多
We propose a scheme for implementation of a universal set of quantum logic gates in decoherence-free subspace with atoms trapped in distant cavities connected by optical fibers.The selective dispersive couplings betwe...We propose a scheme for implementation of a universal set of quantum logic gates in decoherence-free subspace with atoms trapped in distant cavities connected by optical fibers.The selective dispersive couplings between the ground states and the first-excited states of the atom-cavity-fiber system produce a state-dependent Stark shift,which can be used to implement nonlocal phase gates between two logic qubits.The single-logic-qubit quantum gates are achieved by the local two-atom collision and the Stark shift of a single atom.During all the logic operations,the logic qubits remain in decoherence-free subspace and thus the operation is immune to collective dephasing.展开更多
This paper proposes an experimentally feasible scheme for implementing quantum dense coding of trapped-ion system in decoherence-free states. As the phase changes due to time evolution of components with different eig...This paper proposes an experimentally feasible scheme for implementing quantum dense coding of trapped-ion system in decoherence-free states. As the phase changes due to time evolution of components with different eigenenergies of quantum superposition are completely frozen, quantum dense coding based on this model would be perfect. The scheme is insensitive to heating of vibrational mode and Bell states can be exactly distinguished via detecting the ionic state.展开更多
We propose a Lyapunov-based control approach for state transfer based on the decoherence-free target state. The expected target state is constructed to be a decoherence-free state in a decoherence-free subspace (DFS...We propose a Lyapunov-based control approach for state transfer based on the decoherence-free target state. The expected target state is constructed to be a decoherence-free state in a decoherence-free subspace (DFS) by an external laser field I, so that the system state can be decoupled from the environment, and no more decoherence process will occur. With the decoherence-free target state, we design a Lyapunov-based control field II to steer the given initial state to the decoherence-free state of open quantum systems as completely as possible, and decouple the system state from the environment at the same time. In the end, it is verified that the state transfer control designed comes true on a A-type four-level atomic system, and the system can stay on the decoherence-free target state without coupling to environment.展开更多
We present a scheme for implementing a three-qubit phase gate via manipulating rf superconducting quantum interference device (SQUID) qubits in the decoherence-free subspace with respect to cavity decay. Through app...We present a scheme for implementing a three-qubit phase gate via manipulating rf superconducting quantum interference device (SQUID) qubits in the decoherence-free subspace with respect to cavity decay. Through appropriate changes of the coupling constants between rf SQUIDs and cavity, the scheme can be realized only in one step. A high fidelity is obtained even in the presence of decoherence.展开更多
The construction of quantum networks requires long-distance teleportation of multi-qubit entangled states.Here,we investigate the entanglement dynamics of GHZ and W states in fiber channels.In a fiber channel,the two ...The construction of quantum networks requires long-distance teleportation of multi-qubit entangled states.Here,we investigate the entanglement dynamics of GHZ and W states in fiber channels.In a fiber channel,the two most important phenomena that affect polarization entanglement are polarization mode dispersion(PMD)and polarization-dependent loss(PDL).We theoretically characterize how PMD and PDL vectors affect three-qubit states.In particular,upon quantifying the entanglement at the output states using concurrence and entanglement witnesses,we reveal the occurrence of entanglement sudden death and the appearance of decoherence-free subspaces in tripartite systems.Finally,we explore the evolution of GHZ and W state with an arbitrary number of photons in a fiber network and discuss the decoherence mechanism of the 4-party cluster state.展开更多
we present a robust and universal quantum secret sharing protocol with four-qubit decoherence-free (DF) states against collective noise. The transmission's safety is ensured by the nonorthogonality of the noiseless...we present a robust and universal quantum secret sharing protocol with four-qubit decoherence-free (DF) states against collective noise. The transmission's safety is ensured by the nonorthogonality of the noiseless states traveling on the quantum channel. Although this scheme uses entangled states for encoding, only single-particle product measurements are required.展开更多
The design and preparation of quantum states free from environmen-tal decohering effects is critically important for the development of on-chip quantum systems with robustness.One promising strategy is to harness quan...The design and preparation of quantum states free from environmen-tal decohering effects is critically important for the development of on-chip quantum systems with robustness.One promising strategy is to harness quantum state superposition to construct decoherence-free subspace(DFS),which is termed dark state.Typically,the exci-tation of dark states relies on anti-phase-matching on two qubits and the inter-qubit distance is of wavelength scale,which limits the de-velopment of compact quantum chips.In the current work,a hybrid plasmonic quantum emitter was proposed,which was composed of strongly correlated quantum emitters intermediated by a plasmonic nanocavity.Through turning the plasmonic loss from drawback into advantage,the anti-phase-matching rule was broken by rapidly de-caying the superposed bright state and preparing a sub-100 nm dark state with decay rate reduced by 3 orders of magnitudes.More inter-estingly,the dark state could be optically switched to a single-photon emitter with enhanced brightness through photon-blockade,with the quantum second order correlation function at zero delay showing a wide range of tunability down to 0.02.展开更多
A formalism of quantum computing with 2000 qubits or more in decoherence-free subspaces is presented. The subspace is triangular with respect to the index related to the environment. The quantum states in the subspace...A formalism of quantum computing with 2000 qubits or more in decoherence-free subspaces is presented. The subspace is triangular with respect to the index related to the environment. The quantum states in the subspaces are projected states ruled by a subdynamic kinetic equation. These projected states can be used to perform general, large-scale decoherence-free quantum computing.展开更多
A scheme is presented tor generating steady tour-atom decoherence-tree states via tour atoms with the Raman level configuration interacting with a single-mode vacuum cavity field by using quantum-jump-based feedback. ...A scheme is presented tor generating steady tour-atom decoherence-tree states via tour atoms with the Raman level configuration interacting with a single-mode vacuum cavity field by using quantum-jump-based feedback. The scheme meets the condition of a strongly dissipative cavity easily and has a simplified feedback control. Although the spontaneous emission still plays a negative role in the proposed system, we can improve the feedback control to reduce its effect.展开更多
We propose a deterministic generation and purification of decoherence-free spin entangled states with singlet-triplet spins in nanowire double quantum dots via resonator-assisted charge manipulation and measurement te...We propose a deterministic generation and purification of decoherence-free spin entangled states with singlet-triplet spins in nanowire double quantum dots via resonator-assisted charge manipulation and measurement techniques. Each spin qubit corresponds to two electrons in a double quantum dot in the nanowire, with the singlet and one of the triplets as the decoherence-free qubit states. The logical qubits are immunized against the dominant source of decoherence- dephasing--while the influences of additional errors are shown by numerical simulations. We analyse the performance and stability of all required operations and emphasize that all techniques are feasible in current experimental conditions.展开更多
The existence of decoherence-free subspace (DFS) has been discussed widely. In this paper, we propose an alternative scheme for generating the four-atom W states by manipulating DF qubits. The atoms are divided into...The existence of decoherence-free subspace (DFS) has been discussed widely. In this paper, we propose an alternative scheme for generating the four-atom W states by manipulating DF qubits. The atoms are divided into two pairs and trapped in two separate optical cavities. Manipulation of atoms within DFS may generate a two-atom maximally entangled state in an individual cavity, which is a stable state. After driving the system out of DFS, the atoms will interact resonantly with the cavity field. The photons leaking from the cavities interfere at the beamsplitter, which destroys which-path information, and are finally detected by one of the detectors, leading to the generation of a W state. In addition, the numerical simulation indicates that the fidelity of the prepared state can, for a very wide parameter regime, be very close to unity.展开更多
We examine the entanglement dynamics between two strongly driven atoms off-resonantly coupled with a singlemode cavity via the two-photon process with the help of negativity in two different types of initial states. T...We examine the entanglement dynamics between two strongly driven atoms off-resonantly coupled with a singlemode cavity via the two-photon process with the help of negativity in two different types of initial states. The results show that entanglement sudden death may occur under both the above conditions and the sudden death effect can be monitored by modulating the atom-cavity detunings. Furthermore, we also find an atomic decoherence-free subspace so that the initial entanglement between two atoms remains invariable in application.展开更多
This paper proposes a scheme to generate arbitrary four-atom entangled decoherence-free states by using simple linear optical elements, four one-sided cavities in which four atoms are confined respectively. By conveni...This paper proposes a scheme to generate arbitrary four-atom entangled decoherence-free states by using simple linear optical elements, four one-sided cavities in which four atoms are confined respectively. By conveniently tuning the titled angle of one half-wave plate, it can obtain arbitrary four-atom entangled decoherence-free states with a successful probability of 1 as long as there is no photon loss.展开更多
This paper discusses the concept of controllable subspace for open quantum dynamical systems. It is constructively demonstrated that combining structural features of decoherence-free subspaces with the ability to perf...This paper discusses the concept of controllable subspace for open quantum dynamical systems. It is constructively demonstrated that combining structural features of decoherence-free subspaces with the ability to perform open-loop coherent control on open quantum systems will allow decoherence-free subspaces to be controllable. This is in contrast to the observation that open quantum dynamical systems are not open-loop controllable. To a certain extent, this paper gives an alternative control theoretical interpretation on why decoherence-free subspaces can be useful for quantum computation.展开更多
Quantum channel noise may cause the user to obtain a wrong answer and thus misunderstand the database holder for existing QKD-based quantum private query(QPQ) protocols. In addition, an outside attacker may conceal hi...Quantum channel noise may cause the user to obtain a wrong answer and thus misunderstand the database holder for existing QKD-based quantum private query(QPQ) protocols. In addition, an outside attacker may conceal his attack by exploiting the channel noise. We propose a new, robust QPQ protocol based on four-qubit decoherence-free(DF) states. In contrast to existing QPQ protocols against channel noise, only an alternative fixed sequence of single-qubit measurements is needed by the user(Alice) to measure the received DF states. This property makes it easy to implement the proposed protocol by exploiting current technologies. Moreover, to retain the advantage of flexible database queries, we reconstruct Alice's measurement operators so that Alice needs only conditioned sequences of single-qubit measurements.展开更多
We study the stability of decoherence-free subspaces under stochastic phase fluctuations by analytically and numerically evaluating the fidelity of the corresponding decoherence-free subspace bases with stochastic pha...We study the stability of decoherence-free subspaces under stochastic phase fluctuations by analytically and numerically evaluating the fidelity of the corresponding decoherence-free subspace bases with stochastic phase fluctuations under the evolution of environment. The environment is modeled by a bath of oscillators with infinite degrees of freedom and the register-bath coupling is chosen to be a general dissipation-decoherence form. It is found that the decoherence-free subspaces take on good stability in the case of small dissipation and small phase fluctuations.展开更多
We propose a scheme to generate atomic cluster states of arbitrary configuration in the cavity quantumelectrodynamics (QED) system.The process is achieved via adiabatic evolution of dark states,which only requiresadia...We propose a scheme to generate atomic cluster states of arbitrary configuration in the cavity quantumelectrodynamics (QED) system.The process is achieved via adiabatic evolution of dark states,which only requiresadiabatically increasing or decreasing Rabi frequencies of laser.Thus it allows the robust implementation of entanglementagainst certain types of errors.Our scheme is relatively decoherence-free in the sense that excited atomic states are neverpopulated and excited cavity photon states can be made negligible in certain conditions.展开更多
We present a scheme for implementing robust quantum gates in decoherence-free subspaces(DFSs) with double-dot spin qubits. Through the resonator-assisted interaction, the controllable interqubit couplings can be achie...We present a scheme for implementing robust quantum gates in decoherence-free subspaces(DFSs) with double-dot spin qubits. Through the resonator-assisted interaction, the controllable interqubit couplings can be achieved only by adjusting the qubit transition frequencies. We construct a set of logic gates on the DFS-encoded qubits to eliminate the collective noise effects, and thus the gate fidelities can be enhanced remarkably. This proposal may offer a potential approach to realize the robust quantum computing with spin qubits.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61402407 and 11375152)
文摘In this paper,two fault tolerant channel-encrypting quantum dialogue(QD)protocols against collective noise are presented.One is against collective-dephasing noise,while the other is against collective-rotation noise.The decoherent-free states,each of which is composed of two physical qubits,act as traveling states combating collective noise.Einstein-Podolsky-Rosen pairs,which play the role of private quantum key,are securely shared between two participants over a collective-noise channel in advance.Through encryption and decryption with private quantum key,the initial state of each traveling two-photon logical qubit is privately shared between two participants.Due to quantum encryption sharing of the initial state of each traveling logical qubit,the issue of information leakage is overcome.The private quantum key can be repeatedly used after rotation as long as the rotation angle is properly chosen,making quantum resource economized.As a result,their information-theoretical efficiency is nearly up to 66.7%.The proposed QD protocols only need single-photon measurements rather than two-photon joint measurements for quantum measurements.Security analysis shows that an eavesdropper cannot obtain anything useful about secret messages during the dialogue process without being discovered.Furthermore,the proposed QD protocols can be implemented with current techniques in experiment.
基金supported by the Major State Basic Research Development Program of China (Grant No. 2012CB921601)the National Natural Science Foundation of China (Grant No. 10974028)+1 种基金the Doctoral Foundation of the Ministry of Education of China (Grant No. 20093514110009)the Natural Science Foundation of Fujian Province (Grant No. 2009J06002)
文摘We propose a scheme for implementation of a universal set of quantum logic gates in decoherence-free subspace with atoms trapped in distant cavities connected by optical fibers.The selective dispersive couplings between the ground states and the first-excited states of the atom-cavity-fiber system produce a state-dependent Stark shift,which can be used to implement nonlocal phase gates between two logic qubits.The single-logic-qubit quantum gates are achieved by the local two-atom collision and the Stark shift of a single atom.During all the logic operations,the logic qubits remain in decoherence-free subspace and thus the operation is immune to collective dephasing.
基金Project supported by the Important Program of Hunan Provincial Education Department (Grant No 06A038)Department of Education of Hunan Province (Grant No 06C080)Hunan Provincial Natural Science Foundation,China (Grant No 06JJ4003)
文摘This paper proposes an experimentally feasible scheme for implementing quantum dense coding of trapped-ion system in decoherence-free states. As the phase changes due to time evolution of components with different eigenenergies of quantum superposition are completely frozen, quantum dense coding based on this model would be perfect. The scheme is insensitive to heating of vibrational mode and Bell states can be exactly distinguished via detecting the ionic state.
基金partly supported by the National Key Basic Research Program(No.2011CBA00200)the Natural Science Foundation of China(No. 61074050)the Doctoral Fund of Ministry of Education of China(No.20103402110044)
文摘We propose a Lyapunov-based control approach for state transfer based on the decoherence-free target state. The expected target state is constructed to be a decoherence-free state in a decoherence-free subspace (DFS) by an external laser field I, so that the system state can be decoupled from the environment, and no more decoherence process will occur. With the decoherence-free target state, we design a Lyapunov-based control field II to steer the given initial state to the decoherence-free state of open quantum systems as completely as possible, and decouple the system state from the environment at the same time. In the end, it is verified that the state transfer control designed comes true on a A-type four-level atomic system, and the system can stay on the decoherence-free target state without coupling to environment.
基金Project supported by the National Natural Science Foundation of China (Grant No 60667001)
文摘We present a scheme for implementing a three-qubit phase gate via manipulating rf superconducting quantum interference device (SQUID) qubits in the decoherence-free subspace with respect to cavity decay. Through appropriate changes of the coupling constants between rf SQUIDs and cavity, the scheme can be realized only in one step. A high fidelity is obtained even in the presence of decoherence.
基金supported by the National Key R&D Program of China[Grant No.2017YFE0301303]。
文摘The construction of quantum networks requires long-distance teleportation of multi-qubit entangled states.Here,we investigate the entanglement dynamics of GHZ and W states in fiber channels.In a fiber channel,the two most important phenomena that affect polarization entanglement are polarization mode dispersion(PMD)and polarization-dependent loss(PDL).We theoretically characterize how PMD and PDL vectors affect three-qubit states.In particular,upon quantifying the entanglement at the output states using concurrence and entanglement witnesses,we reveal the occurrence of entanglement sudden death and the appearance of decoherence-free subspaces in tripartite systems.Finally,we explore the evolution of GHZ and W state with an arbitrary number of photons in a fiber network and discuss the decoherence mechanism of the 4-party cluster state.
基金Supported by the National High-Tech Research,Development Plan of China under Grant Nos.2009AA01Z441National Basic Research Program of China(973 Program 2007CB311100)+3 种基金the National Natural Science Foundation of China under Grant Nos.60873191, 60821001,61003290The Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20091103120014Beijing Natural Science Foundation under Grant Nos.1093015 and 1102004the ISN open Foundation
文摘we present a robust and universal quantum secret sharing protocol with four-qubit decoherence-free (DF) states against collective noise. The transmission's safety is ensured by the nonorthogonality of the noiseless states traveling on the quantum channel. Although this scheme uses entangled states for encoding, only single-particle product measurements are required.
基金support from the National Key Re-search and Development Program of China (Grant No.2020YFA0715000)the National Natural Science Foundation of China (Grant No.62075111)+1 种基金L.L.acknowledges the Tsinghua University Initiative Scientific Research ProgramH.-B.S.acknowledges support from the National Natural Science Foundation of China (Grant No.61960206003).
文摘The design and preparation of quantum states free from environmen-tal decohering effects is critically important for the development of on-chip quantum systems with robustness.One promising strategy is to harness quantum state superposition to construct decoherence-free subspace(DFS),which is termed dark state.Typically,the exci-tation of dark states relies on anti-phase-matching on two qubits and the inter-qubit distance is of wavelength scale,which limits the de-velopment of compact quantum chips.In the current work,a hybrid plasmonic quantum emitter was proposed,which was composed of strongly correlated quantum emitters intermediated by a plasmonic nanocavity.Through turning the plasmonic loss from drawback into advantage,the anti-phase-matching rule was broken by rapidly de-caying the superposed bright state and preparing a sub-100 nm dark state with decay rate reduced by 3 orders of magnitudes.More inter-estingly,the dark state could be optically switched to a single-photon emitter with enhanced brightness through photon-blockade,with the quantum second order correlation function at zero delay showing a wide range of tunability down to 0.02.
文摘A formalism of quantum computing with 2000 qubits or more in decoherence-free subspaces is presented. The subspace is triangular with respect to the index related to the environment. The quantum states in the subspaces are projected states ruled by a subdynamic kinetic equation. These projected states can be used to perform general, large-scale decoherence-free quantum computing.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11064016 and 61068001)
文摘A scheme is presented tor generating steady tour-atom decoherence-tree states via tour atoms with the Raman level configuration interacting with a single-mode vacuum cavity field by using quantum-jump-based feedback. The scheme meets the condition of a strongly dissipative cavity easily and has a simplified feedback control. Although the spontaneous emission still plays a negative role in the proposed system, we can improve the feedback control to reduce its effect.
基金supported by the National Natural Science Foundation of China (Grant No. 11004029)the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010422)+2 种基金the Ph. D. Program Foundation of the Ministry of Education of Chinathe Excellent Young Teachers Program of Southeast Universitythe National Basic Research Development Program of China(Grant No. 2011CB921203)
文摘We propose a deterministic generation and purification of decoherence-free spin entangled states with singlet-triplet spins in nanowire double quantum dots via resonator-assisted charge manipulation and measurement techniques. Each spin qubit corresponds to two electrons in a double quantum dot in the nanowire, with the singlet and one of the triplets as the decoherence-free qubit states. The logical qubits are immunized against the dominant source of decoherence- dephasing--while the influences of additional errors are shown by numerical simulations. We analyse the performance and stability of all required operations and emphasize that all techniques are feasible in current experimental conditions.
文摘The existence of decoherence-free subspace (DFS) has been discussed widely. In this paper, we propose an alternative scheme for generating the four-atom W states by manipulating DF qubits. The atoms are divided into two pairs and trapped in two separate optical cavities. Manipulation of atoms within DFS may generate a two-atom maximally entangled state in an individual cavity, which is a stable state. After driving the system out of DFS, the atoms will interact resonantly with the cavity field. The photons leaking from the cavities interfere at the beamsplitter, which destroys which-path information, and are finally detected by one of the detectors, leading to the generation of a W state. In addition, the numerical simulation indicates that the fidelity of the prepared state can, for a very wide parameter regime, be very close to unity.
基金Project supported by the National Natural Science Foundation of China (Grant No 60667001)the Education Foundation of Yanbian University of China
文摘We examine the entanglement dynamics between two strongly driven atoms off-resonantly coupled with a singlemode cavity via the two-photon process with the help of negativity in two different types of initial states. The results show that entanglement sudden death may occur under both the above conditions and the sudden death effect can be monitored by modulating the atom-cavity detunings. Furthermore, we also find an atomic decoherence-free subspace so that the initial entanglement between two atoms remains invariable in application.
基金Project supported by the National Natural Science Foundation of China (Grant No 60667001)the Science Foundation of Yanbian University,China (Grant No 2007-35)
文摘This paper proposes a scheme to generate arbitrary four-atom entangled decoherence-free states by using simple linear optical elements, four one-sided cavities in which four atoms are confined respectively. By conveniently tuning the titled angle of one half-wave plate, it can obtain arbitrary four-atom entangled decoherence-free states with a successful probability of 1 as long as there is no photon loss.
基金The project supported by National Natural Science Foundation of China under Grant No.60674040National Natural Science Foundation for Distinguished Young Scholars under Grant No.60225015
文摘This paper discusses the concept of controllable subspace for open quantum dynamical systems. It is constructively demonstrated that combining structural features of decoherence-free subspaces with the ability to perform open-loop coherent control on open quantum systems will allow decoherence-free subspaces to be controllable. This is in contrast to the observation that open quantum dynamical systems are not open-loop controllable. To a certain extent, this paper gives an alternative control theoretical interpretation on why decoherence-free subspaces can be useful for quantum computation.
基金supported by the National Natural Science Foundation of China(Grant Nos.61572053,61671087,and 61602019)and the Beijing Natural Science Foundation(Grant Nos.4162005,and 4152038)
文摘Quantum channel noise may cause the user to obtain a wrong answer and thus misunderstand the database holder for existing QKD-based quantum private query(QPQ) protocols. In addition, an outside attacker may conceal his attack by exploiting the channel noise. We propose a new, robust QPQ protocol based on four-qubit decoherence-free(DF) states. In contrast to existing QPQ protocols against channel noise, only an alternative fixed sequence of single-qubit measurements is needed by the user(Alice) to measure the received DF states. This property makes it easy to implement the proposed protocol by exploiting current technologies. Moreover, to retain the advantage of flexible database queries, we reconstruct Alice's measurement operators so that Alice needs only conditioned sequences of single-qubit measurements.
基金The project supported by the National Fundamental Research Program of China under Grant No. 2001CB309310, National Natural Science Foundation of China under Grant Nos. 10347128, 10325523, and 90203018, the Natural Science Foundation of Hunan Province of China under Grant No. 04JJ3017, the China Postdoctoral Science Foundation under Grant No. 2005037695, and the Scientific Research Fund of Educational Bureau of Hunan Province of China under Grant No. 05B041
文摘We study the stability of decoherence-free subspaces under stochastic phase fluctuations by analytically and numerically evaluating the fidelity of the corresponding decoherence-free subspace bases with stochastic phase fluctuations under the evolution of environment. The environment is modeled by a bath of oscillators with infinite degrees of freedom and the register-bath coupling is chosen to be a general dissipation-decoherence form. It is found that the decoherence-free subspaces take on good stability in the case of small dissipation and small phase fluctuations.
基金National Natural Science Foundation of China under Grant No.1050402
文摘We propose a scheme to generate atomic cluster states of arbitrary configuration in the cavity quantumelectrodynamics (QED) system.The process is achieved via adiabatic evolution of dark states,which only requiresadiabatically increasing or decreasing Rabi frequencies of laser.Thus it allows the robust implementation of entanglementagainst certain types of errors.Our scheme is relatively decoherence-free in the sense that excited atomic states are neverpopulated and excited cavity photon states can be made negligible in certain conditions.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11047006,11304267Programs for Science and Technology Innovation Talents in Universities of Henan Province under Grant No.13HASTIT049+2 种基金Young Backbone Teachers in Universities of Henan Province under Grant No.2012GGJS-173Prominent Young Backbone Talents of Xuchang Universitythe Natural Science Foundation of Zhejiang Province under Grant No.Y6110250
文摘We present a scheme for implementing robust quantum gates in decoherence-free subspaces(DFSs) with double-dot spin qubits. Through the resonator-assisted interaction, the controllable interqubit couplings can be achieved only by adjusting the qubit transition frequencies. We construct a set of logic gates on the DFS-encoded qubits to eliminate the collective noise effects, and thus the gate fidelities can be enhanced remarkably. This proposal may offer a potential approach to realize the robust quantum computing with spin qubits.