In rd (DF) MIMO two-way relay systems, the transmission schemes are designed and the closed-form expressions for the outage probability and average symbol error rate (ASER) of the twoway relay system are derived b...In rd (DF) MIMO two-way relay systems, the transmission schemes are designed and the closed-form expressions for the outage probability and average symbol error rate (ASER) of the twoway relay system are derived based on two different scenarios of channel state information (CSI). For perfect CSI, the maximum-ratio-transmission and combining (MRT-MRC) technique is applied to design the beamforming and combining vectors. Without perfect CSI, the transmission scheme with limited feedback is designed, and the analytical results are verified through two kinds of codebooks, i.e., random vector quantization and Grassmann. The simulation results show that, the proposed transmission schemes for the two-way relay system can outperform other transmission schemes in the performance of outage probability and ASER, and the accuracy of the derived closed-form expressions is also verified by the numerical simulations.展开更多
In this paper, a novel unmanned aerial vehicle(UAV)-enabled full duplex decode-and-forward(DF) technique is used in mobile relaying system. Compared with conventional static relaying, mobile relaying provides more deg...In this paper, a novel unmanned aerial vehicle(UAV)-enabled full duplex decode-and-forward(DF) technique is used in mobile relaying system. Compared with conventional static relaying, mobile relaying provides more degree of freedom for experiencing better channel conditions and further improving the system reliable performance. The source and relay transmit power as well as relay trajectory are jointly optimized for sum outage probability minimization in mobile relaying system. Due to the non-convex nature of the original problem, block coordinate decent optimization techniques are employed to decompose it into two sub-problems, which leads to an efficient iterative algorithm. Specifically, for the pre-determined relay trajectory, the optimal transmit power of source and relay are obtained by solving Karush-Kuhn-Tucker(KKT) conditions. For the given source/relay power allocation, the optimal UAV trajectory is obtained by solving dual problem. Based on the two steps, an iterative algorithm is proposed to jointly optimize source/relay power allocation and UAV trajectory alternately. Numerical results show the performance gain of our proposed scheme.展开更多
In this paper,we explore a cooperative decode-and-forward(DF)relay network comprised of a source,a relay,and a destination in the presence of an eavesdropper.To improve physical-layer security of the relay system,we p...In this paper,we explore a cooperative decode-and-forward(DF)relay network comprised of a source,a relay,and a destination in the presence of an eavesdropper.To improve physical-layer security of the relay system,we propose a jamming aided decodeand-forward relay(JDFR)scheme combining the use of artificial noise and DF relaying which requires two stages to transmit a packet.Specifically,in stage one,the source sends confidential message to the relay while the destination acts as a friendly jammer and transmits artificial noise to confound the eavesdropper.In stage two,the relay forwards its re-encoded message to the destination while the source emits artificial noise to confuse the eavesdropper.In addition,we analyze the security-reliability tradeoff(SRT)performance of the proposed JDFR scheme,where security and reliability are evaluated by deriving intercept probability(IP)and outage probability(OP),respectively.For the purpose of comparison,SRT of the traditional decode-and-forward relay(TDFR)scheme is also analyzed.Numerical results show that the SRT performance of the proposed JDFR scheme is better than that of the TDFR scheme.Also,it is shown that for the JDFR scheme,a better SRT performance can be obtained by the optimal power allocation(OPA)between the friendly jammer and user.展开更多
针对半双工译码转发中继信道,提出了一种可逼近三节点中继信道容量限的空间耦合RA码的设计方法。针对二进制删除信道,源节点分别向中继节点和目的节点发送空间耦合RA码,中继节点先正确恢复出源节点发送的空间耦合RA,然后再次编码产生额...针对半双工译码转发中继信道,提出了一种可逼近三节点中继信道容量限的空间耦合RA码的设计方法。针对二进制删除信道,源节点分别向中继节点和目的节点发送空间耦合RA码,中继节点先正确恢复出源节点发送的空间耦合RA,然后再次编码产生额外的校验比特并转发给目的节点;目的节点结合中继节点发送的额外校验比特和源节点发送的空间耦合RA码进行译码,正确恢复出源节点的信息。为了评估所设计的空间耦合RA码在三节点中继信道下的渐近性能,推导了密度进化算法用于计算阈值。阈值分析结果表明,所提出的空间耦合RA码能够同时逼近源到中继链路和源到目的链路的容量限。同时,基于半双工二进制删除中继信道,仿真了所设计的空间耦合RA码的误码性能,结果表明,其误码性能与所推导的密度进化算法计算的阈值结果一致,呈现出逼近于容量限的优异性能,且优于采用空间耦合低密度奇偶校验(Low Density Parity Check,LDPC)码的性能。展开更多
Bilayer low-density parity-check (LDPC) codes are an effective coding technique for decode-and-forward relaying, where the relay forwards extra parity bits to help the destination to decode the source bits correctly...Bilayer low-density parity-check (LDPC) codes are an effective coding technique for decode-and-forward relaying, where the relay forwards extra parity bits to help the destination to decode the source bits correctly. In the existing bilayer coding scheme, these parity bits are protected by an error correcting code and assumed reliably available at the receiver. We propose an uneoded relaying scheme, where the extra parity bits are forwarded to the destination without any protection. Through density evolution analysis and simulation results, we show that our proposed scheme achieves better performance in terms of bit erasure probability than the existing relaying scheme. In addition, our proposed scheme results in lower complexity at the relay.展开更多
基金Supported by the National Basic Research Program of China (Grant No. 2007CB310603)the National Natural Science Foundation of China(Grant Nos. 60672093, 60496310, 60702029, 60902012)+1 种基金the National High-Tech Research & Development Program of China (Grant No.2007AA01Z262)the Natural Science Foundation of Jiangsu Province (Grant No. BK2005061)
文摘In rd (DF) MIMO two-way relay systems, the transmission schemes are designed and the closed-form expressions for the outage probability and average symbol error rate (ASER) of the twoway relay system are derived based on two different scenarios of channel state information (CSI). For perfect CSI, the maximum-ratio-transmission and combining (MRT-MRC) technique is applied to design the beamforming and combining vectors. Without perfect CSI, the transmission scheme with limited feedback is designed, and the analytical results are verified through two kinds of codebooks, i.e., random vector quantization and Grassmann. The simulation results show that, the proposed transmission schemes for the two-way relay system can outperform other transmission schemes in the performance of outage probability and ASER, and the accuracy of the derived closed-form expressions is also verified by the numerical simulations.
基金supported by National High Technology Project of China 2015AA01A703Scientific and Technological Key Project of Henan Province under Grant 182102210449the National Natural Science Foundation of China under Grants 61372101 and 61671144
文摘In this paper, a novel unmanned aerial vehicle(UAV)-enabled full duplex decode-and-forward(DF) technique is used in mobile relaying system. Compared with conventional static relaying, mobile relaying provides more degree of freedom for experiencing better channel conditions and further improving the system reliable performance. The source and relay transmit power as well as relay trajectory are jointly optimized for sum outage probability minimization in mobile relaying system. Due to the non-convex nature of the original problem, block coordinate decent optimization techniques are employed to decompose it into two sub-problems, which leads to an efficient iterative algorithm. Specifically, for the pre-determined relay trajectory, the optimal transmit power of source and relay are obtained by solving Karush-Kuhn-Tucker(KKT) conditions. For the given source/relay power allocation, the optimal UAV trajectory is obtained by solving dual problem. Based on the two steps, an iterative algorithm is proposed to jointly optimize source/relay power allocation and UAV trajectory alternately. Numerical results show the performance gain of our proposed scheme.
基金supported in part by the National Natural Science Foundation of China under Grant 62271268,Grant 62071253,and Grant 62371252in part by the Jiangsu Provincial Key Research and Development Program under Grant BE2022800in part by the Jiangsu Provincial 333 Talent Project。
文摘In this paper,we explore a cooperative decode-and-forward(DF)relay network comprised of a source,a relay,and a destination in the presence of an eavesdropper.To improve physical-layer security of the relay system,we propose a jamming aided decodeand-forward relay(JDFR)scheme combining the use of artificial noise and DF relaying which requires two stages to transmit a packet.Specifically,in stage one,the source sends confidential message to the relay while the destination acts as a friendly jammer and transmits artificial noise to confound the eavesdropper.In stage two,the relay forwards its re-encoded message to the destination while the source emits artificial noise to confuse the eavesdropper.In addition,we analyze the security-reliability tradeoff(SRT)performance of the proposed JDFR scheme,where security and reliability are evaluated by deriving intercept probability(IP)and outage probability(OP),respectively.For the purpose of comparison,SRT of the traditional decode-and-forward relay(TDFR)scheme is also analyzed.Numerical results show that the SRT performance of the proposed JDFR scheme is better than that of the TDFR scheme.Also,it is shown that for the JDFR scheme,a better SRT performance can be obtained by the optimal power allocation(OPA)between the friendly jammer and user.
文摘针对半双工译码转发中继信道,提出了一种可逼近三节点中继信道容量限的空间耦合RA码的设计方法。针对二进制删除信道,源节点分别向中继节点和目的节点发送空间耦合RA码,中继节点先正确恢复出源节点发送的空间耦合RA,然后再次编码产生额外的校验比特并转发给目的节点;目的节点结合中继节点发送的额外校验比特和源节点发送的空间耦合RA码进行译码,正确恢复出源节点的信息。为了评估所设计的空间耦合RA码在三节点中继信道下的渐近性能,推导了密度进化算法用于计算阈值。阈值分析结果表明,所提出的空间耦合RA码能够同时逼近源到中继链路和源到目的链路的容量限。同时,基于半双工二进制删除中继信道,仿真了所设计的空间耦合RA码的误码性能,结果表明,其误码性能与所推导的密度进化算法计算的阈值结果一致,呈现出逼近于容量限的优异性能,且优于采用空间耦合低密度奇偶校验(Low Density Parity Check,LDPC)码的性能。
文摘Bilayer low-density parity-check (LDPC) codes are an effective coding technique for decode-and-forward relaying, where the relay forwards extra parity bits to help the destination to decode the source bits correctly. In the existing bilayer coding scheme, these parity bits are protected by an error correcting code and assumed reliably available at the receiver. We propose an uneoded relaying scheme, where the extra parity bits are forwarded to the destination without any protection. Through density evolution analysis and simulation results, we show that our proposed scheme achieves better performance in terms of bit erasure probability than the existing relaying scheme. In addition, our proposed scheme results in lower complexity at the relay.